Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 65-74
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct an infinite family of hyperbolic three-manifolds with geodesic boundary that generalize the Thurston and Paoluzzi–Zimmermann manifolds. For the manifolds of this family, we present two-sided bounds for their complexity.
@article{TM_2014_286_a3,
author = {A. Yu. Vesnin and E. A. Fominykh},
title = {Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {65--74},
publisher = {mathdoc},
volume = {286},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2014_286_a3/}
}
TY - JOUR AU - A. Yu. Vesnin AU - E. A. Fominykh TI - Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 65 EP - 74 VL - 286 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2014_286_a3/ LA - ru ID - TM_2014_286_a3 ER -
%0 Journal Article %A A. Yu. Vesnin %A E. A. Fominykh %T Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2014 %P 65-74 %V 286 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2014_286_a3/ %G ru %F TM_2014_286_a3
A. Yu. Vesnin; E. A. Fominykh. Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 65-74. http://geodesic.mathdoc.fr/item/TM_2014_286_a3/