Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 65-74

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an infinite family of hyperbolic three-manifolds with geodesic boundary that generalize the Thurston and Paoluzzi–Zimmermann manifolds. For the manifolds of this family, we present two-sided bounds for their complexity.
@article{TM_2014_286_a3,
     author = {A. Yu. Vesnin and E. A. Fominykh},
     title = {Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {65--74},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_286_a3/}
}
TY  - JOUR
AU  - A. Yu. Vesnin
AU  - E. A. Fominykh
TI  - Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 65
EP  - 74
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_286_a3/
LA  - ru
ID  - TM_2014_286_a3
ER  - 
%0 Journal Article
%A A. Yu. Vesnin
%A E. A. Fominykh
%T Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 65-74
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_286_a3/
%G ru
%F TM_2014_286_a3
A. Yu. Vesnin; E. A. Fominykh. Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 65-74. http://geodesic.mathdoc.fr/item/TM_2014_286_a3/