On the rational type of moment–angle complexes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 241-245 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this note, it is shown that the only moment–angle complexes which are rationally elliptic are those which are products of odd spheres and a disk.
@article{TM_2014_286_a11,
     author = {A. Bahri and M. Bendersky and F. R. Cohen and S. Gitler},
     title = {On the rational type of moment{\textendash}angle complexes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {241--245},
     year = {2014},
     volume = {286},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_286_a11/}
}
TY  - JOUR
AU  - A. Bahri
AU  - M. Bendersky
AU  - F. R. Cohen
AU  - S. Gitler
TI  - On the rational type of moment–angle complexes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 241
EP  - 245
VL  - 286
UR  - http://geodesic.mathdoc.fr/item/TM_2014_286_a11/
LA  - en
ID  - TM_2014_286_a11
ER  - 
%0 Journal Article
%A A. Bahri
%A M. Bendersky
%A F. R. Cohen
%A S. Gitler
%T On the rational type of moment–angle complexes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 241-245
%V 286
%U http://geodesic.mathdoc.fr/item/TM_2014_286_a11/
%G en
%F TM_2014_286_a11
A. Bahri; M. Bendersky; F. R. Cohen; S. Gitler. On the rational type of moment–angle complexes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 241-245. http://geodesic.mathdoc.fr/item/TM_2014_286_a11/

[1] Bahri A., Bendersky M., Cohen F.R., Gitler S., “The polyhedral product functor: A method of decomposition for moment–angle complexes, arrangements and related spaces”, Adv. Math., 225 (2010), 1634–1668 | DOI | MR | Zbl

[2] Bahri A., Bendersky M., Cohen F.R., Gitler S., “Cup-products for the polyhedral product functor”, Math. Proc. Cambridge Philos. Soc., 153 (2012), 457–469 | DOI | MR | Zbl

[3] Baskakov I.V., “Cohomology of $K$-powers of spaces and the combinatorics of simplicial divisions”, Russ. Math. Surv., 57 (2002), 989–990 | DOI | DOI | MR | Zbl

[4] Berglund A., Homotopy invariants of Davis–Januszkiewicz spaces and moment–angle complexes, Preprint, Univ. Copenhagen, 2010 http://www.math.ku.dk/~alexb/papers.html

[5] Berglund A., Jöllenbeck M., “On the Golod property of Stanly–Reisner rings”, J. Algebra, 315 (2007), 249–273 | DOI | MR | Zbl

[6] Buchstaber V.M., Panov T.E., Torus actions and their applications in topology and combinatorics, Univ. Lect. Ser., 24, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[7] Debongnie G., “Rational homotopy type of subspace arrangements with a geometric lattice”, Proc. Amer. Math. Soc., 136 (2008), 2245–2252 | DOI | MR | Zbl

[8] Denham G., Suciu A.I., “Moment–angle complexes, monomial ideals and Massey products”, Pure Appl. Math. Q., 3:1 (2007), 25–60 | DOI | MR | Zbl

[9] Félix Y., Halperin S., “Formal spaces with finite-dimensional rational homotopy”, Trans. Amer. Math. Soc., 270:2 (1982), 575–588 | DOI | MR | Zbl

[10] Félix Y., Halperin S., Thomas J.-C., Rational homotopy theory, Grad. Texts Math., 205, Springer, New York, 2001 | DOI | MR | Zbl

[11] Gurvich M., Some results on the topology of quasitoric manifolds and their equivariant mapping spaces, PhD Thesis, Univ. California, San Diego, 2008 | MR