Coherent control of a~qubit is trap-free
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 244-252

Voir la notice de l'article provenant de la source Math-Net.Ru

There is a strong interest in optimal manipulating of quantum systems by external controls. Traps are controls which are optimal only locally but not globally. If they exist, they can be serious obstacles to the search of globally optimal controls in numerical and laboratory experiments, and for this reason the analysis of traps attracts considerable attention. In this paper we prove that for a wide range of control problems for two-level quantum systems all locally optimal controls are also globally optimal. Hence we conclude that two-level systems in general are trap-free. In particular, manipulating qubits – two-level quantum systems forming a basic building block for quantum computation – is free of traps for fundamental problems such as the state preparation and gate generation.
@article{TM_2014_285_a15,
     author = {A. N. Pechen and N. B. Il'in},
     title = {Coherent control of a~qubit is trap-free},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {244--252},
     publisher = {mathdoc},
     volume = {285},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_285_a15/}
}
TY  - JOUR
AU  - A. N. Pechen
AU  - N. B. Il'in
TI  - Coherent control of a~qubit is trap-free
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 244
EP  - 252
VL  - 285
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_285_a15/
LA  - ru
ID  - TM_2014_285_a15
ER  - 
%0 Journal Article
%A A. N. Pechen
%A N. B. Il'in
%T Coherent control of a~qubit is trap-free
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 244-252
%V 285
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_285_a15/
%G ru
%F TM_2014_285_a15
A. N. Pechen; N. B. Il'in. Coherent control of a~qubit is trap-free. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 244-252. http://geodesic.mathdoc.fr/item/TM_2014_285_a15/