On a~field equation generating a~new class of particular solutions to the Yang--Mills equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 207-220
Voir la notice de l'article provenant de la source Math-Net.Ru
In a pseudo-Euclidean space, a field equation (system of equations) is considered that is invariant under orthogonal (from the group $\mathrm O(p,q)$) coordinate transformations and invariant under gauge transformations from the spinor group $\mathrm{Pin}(p,q)$. The solutions to the field equation are connected with a class of new particular solutions to the Yang–Mills equations.
@article{TM_2014_285_a12,
author = {N. G. Marchuk},
title = {On a~field equation generating a~new class of particular solutions to the {Yang--Mills} equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {207--220},
publisher = {mathdoc},
volume = {285},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2014_285_a12/}
}
TY - JOUR AU - N. G. Marchuk TI - On a~field equation generating a~new class of particular solutions to the Yang--Mills equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 207 EP - 220 VL - 285 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2014_285_a12/ LA - ru ID - TM_2014_285_a12 ER -
%0 Journal Article %A N. G. Marchuk %T On a~field equation generating a~new class of particular solutions to the Yang--Mills equations %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2014 %P 207-220 %V 285 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2014_285_a12/ %G ru %F TM_2014_285_a12
N. G. Marchuk. On a~field equation generating a~new class of particular solutions to the Yang--Mills equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and analysis, Tome 285 (2014), pp. 207-220. http://geodesic.mathdoc.fr/item/TM_2014_285_a12/