Half-linear Sturm--Liouville problem with weights: Asymptotic behavior of eigenfunctions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 157-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlinear Sturm–Liouville problem with weights. Under suitable assumptions on weights we prove an asymptotic estimate for the decay of the eigenfunctions. An application to the radial problem on the entire $\mathbb R^N$ is given.
@article{TM_2014_284_a8,
     author = {Pavel Dr\'abek and Alois Kufner and Komil Kuliev},
     title = {Half-linear {Sturm--Liouville} problem with weights: {Asymptotic} behavior of eigenfunctions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {157--162},
     publisher = {mathdoc},
     volume = {284},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_284_a8/}
}
TY  - JOUR
AU  - Pavel Drábek
AU  - Alois Kufner
AU  - Komil Kuliev
TI  - Half-linear Sturm--Liouville problem with weights: Asymptotic behavior of eigenfunctions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 157
EP  - 162
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_284_a8/
LA  - en
ID  - TM_2014_284_a8
ER  - 
%0 Journal Article
%A Pavel Drábek
%A Alois Kufner
%A Komil Kuliev
%T Half-linear Sturm--Liouville problem with weights: Asymptotic behavior of eigenfunctions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 157-162
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_284_a8/
%G en
%F TM_2014_284_a8
Pavel Drábek; Alois Kufner; Komil Kuliev. Half-linear Sturm--Liouville problem with weights: Asymptotic behavior of eigenfunctions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 157-162. http://geodesic.mathdoc.fr/item/TM_2014_284_a8/

[1] Opic B., Kufner A., Hardy-type inequalities, Pitman Res. Notes Math., 279, Longman Scientific Technical, Harlow, 1990 | MR

[2] Nečas J., “On the discreteness of the spectrum of a nonlinear Sturm–Liouville equation”, Sov. Math. Dokl., 12 (1971), 1779–1783 | MR

[3] Drábek P., Kufner A., “Hardy inequality and properties of the quasilinear Sturm–Liouville problem”, Atti Accad. Naz. Lincei. Cl. Sci. Fis. Mat. Nat. Ser. 9. Rend. Lincei. Mat. Appl., 18:2 (2007), 125–138 | DOI | MR | Zbl

[4] Drábek P., Kufner A., “Discreteness and simplicity of the spectrum of a quasilinear Sturm–Liouville-type problem on an infinite interval”, Proc. Amer. Math. Soc., 134:1 (2006), 235–242 | DOI | MR | Zbl

[5] Drábek P., Kuliev K., “Half-linear Sturm–Liouville problem with weights”, Bull. Belg. Math. Soc. Simon Stevin, 19:1 (2012), 107–119 | MR | Zbl