Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2014_284_a5, author = {V. I. Burenkov and E. D. Nursultanov and D. K. Chigambayeva}, title = {Description of the interpolation spaces for a~pair of local {Morrey-type} spaces and their generalizations}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {105--137}, publisher = {mathdoc}, volume = {284}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2014_284_a5/} }
TY - JOUR AU - V. I. Burenkov AU - E. D. Nursultanov AU - D. K. Chigambayeva TI - Description of the interpolation spaces for a~pair of local Morrey-type spaces and their generalizations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 105 EP - 137 VL - 284 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2014_284_a5/ LA - ru ID - TM_2014_284_a5 ER -
%0 Journal Article %A V. I. Burenkov %A E. D. Nursultanov %A D. K. Chigambayeva %T Description of the interpolation spaces for a~pair of local Morrey-type spaces and their generalizations %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2014 %P 105-137 %V 284 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2014_284_a5/ %G ru %F TM_2014_284_a5
V. I. Burenkov; E. D. Nursultanov; D. K. Chigambayeva. Description of the interpolation spaces for a~pair of local Morrey-type spaces and their generalizations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 105-137. http://geodesic.mathdoc.fr/item/TM_2014_284_a5/
[1] Baouendi M.S., Goulaouic Ch., “Commutation de l'intersection et des foncteurs d'interpolation”, C. r. Acad. sci. Paris A, 265 (1967), 313–315 | MR | Zbl
[2] Berg I., Lëfstrëm I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR
[3] Blasco O., Ruiz A., Vega L., “Non interpolation in Morrey–Campanato and block spaces”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. 4, 28:1 (1999), 31–40 | MR | Zbl
[4] Brudnyi Yu.A., Krein S.G., Semenov E.M., “Interpolyatsiya lineinykh operatorov”, Matematicheskii analiz, Itogi nauki i tekhniki, 24, VINITI, M., 1986, 3–163 | MR | Zbl
[5] Burenkov V.I., “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl
[6] Burenkov V.I., “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. J., 4:1 (2013), 21–45 | MR | Zbl
[7] Burenkov V.I., Darbayeva D.K., Nursultanov E.D., “Description of interpolation spaces for general local Morrey-type spaces”, Eurasian Math. J., 4:1 (2013), 46–53 | MR | Zbl
[8] Burenkov V.I., Nursultanov E.D., “Opisanie interpolyatsionnykh prostranstv dlya lokalnykh prostranstv tipa Morri”, Tr. MIAN, 269, 2010, 52–62 | MR | Zbl
[9] Calderón A.P., “Spaces between $L^1$ and $L^\infty $ and the theorem of Marcinkiewicz”, Stud. math., 26 (1966), 273–299 | MR | Zbl
[10] Campanato S., Murthy M.K.V., “Una generalizzazione del teorema di Riesz–Thorin”, Ann. Sc. Norm. Super. Pisa. Sci. Fis. Mat. Ser. 3., 19 (1965), 87–100 | MR | Zbl
[11] Freitag D., “Reele Interpolation zwischen $l_p$-Räumen mit Gewichten”, Math. Nachr., 77 (1977), 101–115 | DOI | MR
[12] Freitag D., “Real interpolation of weighted $L_p$-spaces”, Math. Nachr., 86 (1978), 15–18 | DOI | MR | Zbl
[13] Gilbert J.E., “Interpolation between weighted $L^p$-spaces”, Ark. Mat., 10 (1972), 235–249 | DOI | MR | Zbl
[14] Guliyev V.S., “Generalized weighted Morrey spaces and higher order commutators of sublinear operators”, Eurasian Math. J., 3:3 (2012), 33–61 | MR | Zbl
[15] Lemarié-Rieusset P.G., “The role of Morrey spaces in the study of Navier–Stokes and Euler equations”, Eurasian Math. J., 3:3 (2012), 62–93 | MR | Zbl
[16] Lemarié-Rieusset P.G., “Multipliers and Morrey spaces”, Potential Anal., 38:3 (2013), 741–752 | DOI | MR | Zbl
[17] Lizorkin P.I., “Interpolyatsiya prostranstv $L_p$ s vesom”, Tr. MIAN, 140, 1976, 201–211 | MR | Zbl
[18] Morrey C.B., Jr., “On the solution of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR
[19] Peetre J., “On the theory of $\mathcal L_{p,\lambda }$ spaces”, J. Funct. Anal., 4 (1969), 71–87 | DOI | MR | Zbl
[20] Peetre J., “A new approach in interpolation spaces”, Stud. math., 34 (1970), 23–42 | MR | Zbl
[21] Ragusa M.A., “Operators in Morrey type spaces and applications”, Eurasian Math. J., 3:3 (2012), 94–109 | MR | Zbl
[22] Ruiz A., Vega L., “Corrigenda to “Unique continuation for Schrödinger operators” and a remark on interpolation on Morrey spaces”, Publ. Mat. Barc., 39 (1995), 405–411 | DOI | MR | Zbl
[23] Sagher Y., “An application of interpolation theory to Fourier series”, Stud. math., 41 (1972), 169–181 | MR | Zbl
[24] Sagher Y., “Integrability conditions for the Fourier transform”, J. Math. Anal. Appl., 54 (1976), 151–156 | DOI | MR | Zbl
[25] Sickel W., “Smoothness spaces related to Morrey spaces—a survey. I”, Eurasian Math. J., 3:3 (2012), 110–149 | MR | Zbl
[26] Sickel W., “Smoothness spaces related to Morrey spaces—a survey. II”, Eurasian Math. J., 4:1 (2013), 82–124 | MR | Zbl
[27] Stampacchia G., “$\mathcal L_{p,\lambda }$-spaces and interpolation”, Commun. Pure Appl. Math., 17 (1964), 293–306 | DOI | MR | Zbl
[28] Stein E.M., Weiss G., “Interpolation of operators with change of measures”, Trans. Amer. Math. Soc., 87:1 (1958), 159–172 | DOI | MR | Zbl
[29] Tararykova T.V., “Comments on definitions of general local and global Morrey-type spaces”, Eurasian Math. J., 4:1 (2013), 125–134 | MR | Zbl