Description of traces of functions in the Sobolev space with a~Muckenhoupt weight
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 288-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize the trace of the Sobolev space $W_p^l(\mathbb R^n,\gamma)$ with $1$ and weight $\gamma\in A_p^\mathrm{loc}(\mathbb R^n)$ on a $d$-dimensional plane for $1\le d$. It turns out that for a function $\varphi$ to be the trace of a function $f\in W_p^l(\mathbb R^n,\gamma)$, it is necessary and sufficient that $\varphi$ belongs to a new Besov space of variable smoothness, $\overline B{}_p^l(\mathbb R^d,\{\gamma_{k,m}\})$, constructed in this paper. The space $\overline B{}_p^l(\mathbb R^d,\{\gamma_{k,m}\})$ is compared with some earlier known Besov spaces of variable smoothness.
@article{TM_2014_284_a19,
     author = {A. I. Tyulenev},
     title = {Description of traces of functions in the {Sobolev} space with {a~Muckenhoupt} weight},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {288--303},
     publisher = {mathdoc},
     volume = {284},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_284_a19/}
}
TY  - JOUR
AU  - A. I. Tyulenev
TI  - Description of traces of functions in the Sobolev space with a~Muckenhoupt weight
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 288
EP  - 303
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_284_a19/
LA  - ru
ID  - TM_2014_284_a19
ER  - 
%0 Journal Article
%A A. I. Tyulenev
%T Description of traces of functions in the Sobolev space with a~Muckenhoupt weight
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 288-303
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_284_a19/
%G ru
%F TM_2014_284_a19
A. I. Tyulenev. Description of traces of functions in the Sobolev space with a~Muckenhoupt weight. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 288-303. http://geodesic.mathdoc.fr/item/TM_2014_284_a19/

[1] Abels H., Krbec M., Schumacher K., “On the trace space of a Sobolev space with a radial weight”, J. Funct. Spaces Appl., 6:3 (2008), 259–276 | DOI | MR | Zbl

[2] Besov O.V., “Interpolyatsiya, vlozhenie i prodolzhenie prostranstv funktsii peremennoi gladkosti”, Tr. MIAN., 248 (2005), 52–63 | MR | Zbl

[3] Бесов О.В., Ильин В.П., Никольский С.М. Интегральные представления функций и теоремы вложения. 2-е изд. М.: Наука, 1996. | MR

[4] Brudnyi Yu.A., “Prostranstva, opredelyaemye s pomoschyu lokalnykh priblizhenii”, Tr. Mosk. mat. o-va., 24 (1971), 69–132 | MR | Zbl

[5] Burenkov V.I., Sobolev spaces on domains, (Teubner-Texte Math.; Bd. 137)., Teubner, Stuttgart, 1998 | DOI | MR | Zbl

[6] DeVore R.A., Sharpley R.C., “Besov spaces on domains in $\mathbb R^d$”, Trans. Amer. Math. Soc., 335:2 (1993), 843–864 | MR | Zbl

[7] Haroske D., Schmeisser H.-J. On trace spaces of function spaces with a radial weight: the atomic approach // Complex Var. Elliptic Eqns. 2010. V. 55, N 8–10. P. 875–896. | MR

[8] Hedberg L.I., Netrusov Yu. An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation. Providence, RI: Amer. Math. Soc., 2007. (Mem. AMS; V. 188, N 882). | MR

[9] Izuki M., Sawano Y., “Atomic decomposition for weighted Besov and Triebel–Lizorkin spaces”, Math. Nachr., 285:1 (2012), 103–126 | DOI | MR | Zbl

[10] Kalyabin G.A., “Zadacha o sledakh dlya vesovykh anizotropnykh prostranstv liuvillevskogo tipa”, Izv. AN SSSR. Ser. mat., 41:5 (1977), 1138–1160 | MR

[11] Kalyabin G.A., Pismennaya S.I., “Opisanie sledov funktsii, proizvodnye kotorykh ogranicheny s nekotorymi vesami”, Mat. zametki., 35:3 (1984), 357–368 | MR | Zbl

[12] Kempka H., Vybíral J., “Spaces of variable smoothness and integrability: characterizations by local means and ball means of differences”, J. Fourier Anal. Appl., 18:4 (2012), 852–891 | DOI | MR | Zbl

[13] Nikolskii S.M., Lizorkin P.I., Miroshin N.V., “Vesovye funktsionalnye prostranstva i ikh prilozheniya k issledovaniyu kraevykh zadach dlya vyrozhdayuschikhsya ellipticheskikh uravnenii”, Izv. vuzov. Matematika., 1988, no. 8, 4–30 | MR

[14] Piotrowska I. Weighted function spaces and traces on fractals: PhD Thesis. Jena: Friedrich-Schiller-Univ., 2006.

[15] Rauhut H., Ullrich T., “Generalized coorbit space theory and inhomogeneous function spaces of Besov–Lizorkin–Triebel type”, J. Funct. Anal., 260:11 (2011), 3299–3362 | DOI | MR | Zbl

[16] Rychkov V.S., “Littlewood–Paley theory and function spaces with $A_p^\textup {loc}$ weights”, Math. Nachr., 224:1 (2001), 145–180 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[17] Stein E.M. Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals. Princeton, NJ: Princeton Univ. Press, 1993. | MR

[18] Tyulenev A.I., “Zadacha o sledakh dlya prostranstv Soboleva s vesami tipa Makenkhaupta”, Mat. zametki., 94:5 (2013), 720–732 | DOI | Zbl

[19] Uspenskii S.V., “O teoremakh vlozheniya dlya vesovykh klassov”, Tr. MIAN., 60 (1961), 282–303 | MR