Description of traces of functions in the Sobolev space with a~Muckenhoupt weight
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 288-303

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize the trace of the Sobolev space $W_p^l(\mathbb R^n,\gamma)$ with $1$ and weight $\gamma\in A_p^\mathrm{loc}(\mathbb R^n)$ on a $d$-dimensional plane for $1\le d$. It turns out that for a function $\varphi$ to be the trace of a function $f\in W_p^l(\mathbb R^n,\gamma)$, it is necessary and sufficient that $\varphi$ belongs to a new Besov space of variable smoothness, $\overline B{}_p^l(\mathbb R^d,\{\gamma_{k,m}\})$, constructed in this paper. The space $\overline B{}_p^l(\mathbb R^d,\{\gamma_{k,m}\})$ is compared with some earlier known Besov spaces of variable smoothness.
@article{TM_2014_284_a19,
     author = {A. I. Tyulenev},
     title = {Description of traces of functions in the {Sobolev} space with {a~Muckenhoupt} weight},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {288--303},
     publisher = {mathdoc},
     volume = {284},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_284_a19/}
}
TY  - JOUR
AU  - A. I. Tyulenev
TI  - Description of traces of functions in the Sobolev space with a~Muckenhoupt weight
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 288
EP  - 303
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_284_a19/
LA  - ru
ID  - TM_2014_284_a19
ER  - 
%0 Journal Article
%A A. I. Tyulenev
%T Description of traces of functions in the Sobolev space with a~Muckenhoupt weight
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 288-303
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_284_a19/
%G ru
%F TM_2014_284_a19
A. I. Tyulenev. Description of traces of functions in the Sobolev space with a~Muckenhoupt weight. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 288-303. http://geodesic.mathdoc.fr/item/TM_2014_284_a19/