Gagliardo--Nirenberg inequalities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 271-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with Gagliardo–Nirenberg inequalities in function spaces of type $B^s_{p,q}(\mathbb R ^n)$ and $F^s_{p,q}(\mathbb R ^n)$.
@article{TM_2014_284_a18,
     author = {Hans Triebel},
     title = {Gagliardo--Nirenberg inequalities},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {271--287},
     publisher = {mathdoc},
     volume = {284},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_284_a18/}
}
TY  - JOUR
AU  - Hans Triebel
TI  - Gagliardo--Nirenberg inequalities
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 271
EP  - 287
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_284_a18/
LA  - en
ID  - TM_2014_284_a18
ER  - 
%0 Journal Article
%A Hans Triebel
%T Gagliardo--Nirenberg inequalities
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 271-287
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_284_a18/
%G en
%F TM_2014_284_a18
Hans Triebel. Gagliardo--Nirenberg inequalities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 271-287. http://geodesic.mathdoc.fr/item/TM_2014_284_a18/

[1] Badr N., “Gagliardo–Nirenberg inequalities on manifolds”, J. Math. Anal. Appl., 349 (2009), 493–502 | DOI | MR | Zbl

[2] Bahouri H., Cohen A., “Refined Sobolev inequalities in Lorentz spaces”, J. Fourier Anal. Appl., 17 (2011), 662–673 | DOI | MR | Zbl

[3] Besov O.V., “O nekotorom semeistve funktsionalnykh prostranstv. Teoremy vlozheniya i prodolzheniya”, DAN SSSR, 126:6 (1959), 1163–1165 | MR | Zbl

[4] Besov O.V., “Investigation of a family of function spaces in connection with theorems of imbedding and extension”, Amer. Math. Soc. Transl. Ser. 2, 40 (1964), 85–126 | MR | Zbl | Zbl

[5] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 ; 2-е изд., 1996; Besov O.V., Il'in V.P., Nikol'skii S.M., Integral representations of functions and imbedding theorems, J. Wiley Sons, New York, 1978, 1979 | MR | Zbl | Zbl

[6] Bojarski B., Hajłasz P., “Pointwise inequalities for Sobolev functions and some applications”, Stud. math., 106 (1993), 77–92 | MR | Zbl

[7] Caffarelli L., Kohn R., Nirenberg L., “First order interpolation inequalities with weights”, Compos. Math., 53 (1984), 259–275 | MR | Zbl

[8] Cohen A., DeVore R., Petrushev P., Xu H., “Nonlinear approximation and the space $\mathrm {BV}(\mathbb R^2)$”, Amer. J. Math., 121 (1999), 587–628 | DOI | MR | Zbl

[9] Cohen A., Meyer Y., Oru F., Improved Sobolev embedding theorem, Sémin. Éqns. Dériv. Partielles 1997–1998, Exp. XVI, Éc. Polytech., Palaiseau, 1998 | MR

[10] Edmunds D.E., Edmunds R.M., Triebel H., “Entropy numbers of embeddings of fractional Besov–Sobolev spaces in Orlicz spaces”, J. London Math. Soc. Ser. 2, 35 (1987), 121–134 | DOI | MR | Zbl

[11] Edmunds D.E., Triebel H., Function spaces, entropy numbers, differential operators, Cambridge Univ. Press, Cambridge, 1996 | MR

[12] Gagliardo E., “Ulteriori proprietà di alcune classi di funzioni in più variabili”, Ricerche Mat., 8 (1959), 24–51 | MR | Zbl

[13] Giga M.-H., Giga Y., Saal J., Nonlinear partial differential equations: Asymptotic behavior of solutions and self-similar solutions, Birkhäuser, Basel, 2010 | MR | Zbl

[14] Hajłasz P., “Sobolev spaces on an arbitrary metric space”, Potential Anal., 5 (1996), 403–415 | MR | Zbl

[15] Haroske D.D., Envelopes and sharp embeddings of function spaces, Res. Notes Math., 437, Chapman Hall/CRC, Boca Raton, FL, 2007 | MR | Zbl

[16] Haroske D.D., Triebel H., “Embeddings of function spaces: a criterion in terms of differences”, Complex Var. Elliptic Eqns., 56 (2011), 931–944 | DOI | MR | Zbl

[17] Kolyada V.I., “Inequalities of Gagliardo–Nirenberg type and estimates for the moduli of continuity”, Russ. Math. Surv., 60 (2005), 1147–1164 | DOI | DOI | MR | Zbl

[18] Kolyada V.I., Pérez Lázaro F.J., “Inequalities for partial moduli of continuity and partial derivatives”, Constr. Approx., 34 (2011), 23–59 | DOI | MR | Zbl

[19] Kopaliani T., Chelidze G., “Gagliardo–Nirenberg type inequality for variable exponent Lebesgue spaces”, J. Math. Anal. Appl., 356 (2009), 232–236 | DOI | MR | Zbl

[20] Kozono H., Wadade H., “Remarks on Gagliardo–Nirenberg type inequality with critical Sobolev space and BMO”, Math. Z., 259 (2008), 935–950 | DOI | MR | Zbl

[21] Ledoux M., “On improved Sobolev embedding theorems”, Math. Res. Lett., 10 (2003), 659–669 | DOI | MR | Zbl

[22] Lin C.-S., “Interpolation inequalities with weights”, Commun. Partial Diff. Eqns., 11 (1986), 1515–1538 | DOI | MR | Zbl

[23] Martin J., Milman M., “Sharp Gagliardo–Nirenberg inequalities via symmetrization”, Math. Res. Lett., 14 (2007), 49–62 | DOI | MR | Zbl

[24] Maz'ya V., Sobolev spaces, 2nd ed., Springer, Berlin, 1985 | MR | Zbl

[25] Maz'ya V., Shaposhnikova T., “On the Brezis and Mironescu conjecture concerning a Gagliardo–Nirenberg inequality for fractional Sobolev norms”, J. Math. Pures Appl., 81 (2002), 877–884 | DOI | MR | Zbl

[26] Nagayasu S., Wadade H., “Characterization of the critical Sobolev space on the optimal singularity at the origin”, J. Funct. Anal., 258 (2010), 3725–3757 | DOI | MR | Zbl

[27] Nikol'skii S.M., “Inequalities for entire functions of finite degree and their application to the theory of differentiable functions of several variables”, Amer. Math. Soc. Transl. Ser. 2, 80 (1969), 1–38

[28] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 ; 2-е изд., 1977; Nikol'skii S.M., Approximation of functions of several variables and imbedding theorems, Springer, Berlin, 1975 | MR | Zbl | MR

[29] Nirenberg L., “On elliptic partial differential equations”, Ann. Sc. Norm. Super. Pisa. Sci. Fis. Mat. Ser. 3, 13 (1959), 115–162 | MR | Zbl

[30] Ozawa T., “On critical cases of Sobolev's inequalities”, J. Funct. Anal., 127 (1995), 259–269 | DOI | MR | Zbl

[31] Sickel W., Triebel H., “Hölder inequalities and sharp embeddings in function spaces of $B^s_{pq}$ and $F^s_{pq}$ type”, Z. Anal. Anwend., 14 (1995), 105–140 | DOI | MR | Zbl

[32] Stein E.M., Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970 | MR

[33] Triebel H., “Spaces of distributions of Besov type on Euclidean $n$-space. Duality, interpolation”, Ark. Mat., 11 (1973), 13–64 | DOI | MR | Zbl

[34] Triebel H., Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam, 1978 ; 2nd ed., Barth, Leipzig, 1995 | MR | Zbl | Zbl

[35] Triebel H., Theory of function spaces, Birkhäuser, Basel, 1983 | MR | Zbl

[36] Triebel H., Theory of function spaces. II, Birkhäuser, Basel, 1992 | MR | Zbl

[37] Triebel H., “Approximation numbers and entropy numbers of embeddings of fractional Besov–Sobolev spaces in Orlicz spaces”, Proc. London Math. Soc. Ser. 3, 66 (1993), 589–618 | DOI | MR | Zbl

[38] Triebel H., The structure of functions, Birkhäuser, Basel, 2001 | MR | Zbl

[39] Triebel H., Theory of function spaces. III, Birkhäuser, Basel, 2006 | MR | Zbl

[40] Triebel H., “Sobolev–Besov spaces of measurable functions”, Stud. math., 201 (2010), 69–86 | DOI | MR | Zbl

[41] Triebel H., “Limits of Besov norms”, Arch. Math., 96 (2011), 169–175 | DOI | MR | Zbl

[42] Wadade H., “Remarks on the Gagliardo–Nirenberg type inequality in the Besov and the Triebel–Lizorkin spaces in the limiting case”, J. Fourier Anal. Appl., 15 (2009), 857–870 | DOI | MR | Zbl

[43] Ziemer W.P., Weakly differentiable functions: Sobolev spaces and functions of bounded variation, Springer, Berlin, 1989 | MR