Subradial functions and compact embeddings
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 224-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the compactness of embeddings of certain subsets of Nikol'skii–Besov spaces (defined on $\mathbb R^d$), consisting of essentially subradial functions, into Lebesgue spaces. Particular decay properties of radial functions are our main tool here.
@article{TM_2014_284_a15,
     author = {Winfried Sickel and Leszek Skrzypczak},
     title = {Subradial functions and compact embeddings},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {224--242},
     publisher = {mathdoc},
     volume = {284},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_284_a15/}
}
TY  - JOUR
AU  - Winfried Sickel
AU  - Leszek Skrzypczak
TI  - Subradial functions and compact embeddings
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 224
EP  - 242
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_284_a15/
LA  - en
ID  - TM_2014_284_a15
ER  - 
%0 Journal Article
%A Winfried Sickel
%A Leszek Skrzypczak
%T Subradial functions and compact embeddings
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 224-242
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_284_a15/
%G en
%F TM_2014_284_a15
Winfried Sickel; Leszek Skrzypczak. Subradial functions and compact embeddings. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 224-242. http://geodesic.mathdoc.fr/item/TM_2014_284_a15/

[1] Adams R.A., Sobolev spaces, Academic Press, New York, 1975 | MR | Zbl

[2] Berestycki H., Lions P.-L., “Existence of a ground state in nonlinear equations of the Klein–Gordon type”, Variational inequalities and complementarity problems: Theory and applications, Proc. Int. School Math., Erice (Sicily), 1978, J. Wiley Sons, Chichester, 1980, 35–51 | MR

[3] Bergh J., Löfström J., Interpolation spaces. An Introduction, Springer, Berlin, 1976 | MR | Zbl

[4] Besov O.V., Il'in V.P., Nikol'skii S.M., Integral representations of functions and imbedding theorems, Vols. 1, 2, V.H. Winston Sons, Washington, D.C., 1978, 1979 | MR | Zbl | Zbl

[5] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, 2-e izd., Nauka, M., 1996 | MR

[6] Cho Y., Ozawa T., “Sobolev inequalities with symmetry”, Commun. Contemp. Math., 11 (2009), 355–365 | DOI | MR | Zbl

[7] Coleman S., Glaser V., Martin A., “Action minima among solutions to a class of Euclidean scalar field equations”, Commun. Math. Phys., 58 (1978), 211–221 | DOI | MR

[8] Cwikel M., Tintarev K., “On interpolation of cocompact imbeddings”, Rev. Mat. Complut., 26:1 (2013), 33–55 | DOI | MR | Zbl

[9] Dispa S., “Intrinsic characterizations of Besov spaces on Lipschitz domains”, Math. Nachr., 260 (2003), 21–33 | DOI | MR | Zbl

[10] Edmunds D.E., Triebel H., Function spaces, entropy numbers, differential operators, Cambridge Univ. Press, Cambridge, 1996 | MR

[11] Evans L.C., Gariepy R.F., Measure theory and fine properties of functions, CRC Press, Boca Raton, 1992 | MR | Zbl

[12] Franke J., Fourier-Multiplikatoren, Littlewood–Paley-Theoreme und Approximation durch ganze analytische Funktionen in gewichteten Funktionenräumen: Forschungsergeb. N/86/8, Jena:, 1986

[13] Kondrashov V.I., “O nekotorykh svoistvakh funktsii iz prostranstva $L_p^\nu $”, DAN SSSR, 48:8 (1945), 563–566

[14] König H., “Operator properties of Sobolev imbeddings over unbounded domains”, J. Funct. Anal., 24 (1977), 32–51 | DOI | MR | Zbl

[15] König H., “Approximation numbers of Sobolev imbeddings over unbounded domains”, J. Funct. Anal., 29 (1978), 74–87 | DOI | MR | Zbl

[16] Krein S.G., Petunin Yu.I., Semenov E.M., Interpolation of linear operators, Amer. Math. Soc., Providence, R.I., 1982 | MR | MR

[17] Kudryavtsev L.D., Nikol'skii S.M., “Spaces of differentiable functions of several variables and imbedding theorems”, Analysis III, Encycl. Math. Sci., 26, Springer, Berlin, 1991, 1–140 | MR | MR

[18] Kuzin I.A., “Existence theorems for solutions to nonlinear elliptic problems in $\mathbf R^N$ in the class of block-radial functions”, Diff. Eqns., 30 (1994), 587–595 | MR | Zbl

[19] Kuzin I., Pohozaev S., Entire solutions of semilinear elliptic equations, Birkhäuser, Basel, 1997 | MR | Zbl

[20] Leopold H.-G., Skrzypczak L., “Compactness of embeddings of function spaces on quasi-bounded domains and the distribution of eigenvalues of related elliptic operators”, Proc. Edinb. Math. Soc. Ser. 2, 56:3 (2013), 829–851 | DOI | MR | Zbl

[21] Lions P.-L., “Symétrie et compacité dans les espaces de Sobolev”, J. Funct. Anal., 49 (1982), 315–334 | DOI | MR | Zbl

[22] Nikol'skii S.M., Approximation of functions of several variables and imbedding theorems, Springer, Berlin, 1975 | MR | Zbl

[23] Peetre J., New thoughts on Besov spaces, Duke Univ., Durham, 1976 | MR | Zbl

[24] Rellich F., “Ein Satz über mittlere Konvergenz”, Nachr. Göttingen, 1930, 30–35 | Zbl

[25] Runst T., Sickel W., Sobolev spaces of fractional order, Nemytskij operators and nonlinear partial differential equations, de Gruyter, Berlin, 1996 | MR | Zbl

[26] Schmeisser H.-J., Triebel H., Topics in Fourier analysis and function spaces, J. Wiley Sons, Chichester, 1987 | MR | Zbl

[27] Sickel W., Skrzypczak L., “Radial subspaces of Besov and Lizorkin–Triebel classes: extended Strauss lemma and compactness of embeddings”, J. Fourier Anal. Appl., 6 (2000), 639–662 | DOI | MR | Zbl

[28] Sickel W., Skrzypczak L., “On the interplay of regularity and decay in case of radial functions. II: Homogeneous spaces”, J. Fourier Anal. Appl., 18 (2012), 548–582 | DOI | MR | Zbl

[29] Sickel W., Skrzypczak L., Vybíral J., “On the interplay of regularity and decay in case of radial functions. I: Inhomogeneous spaces”, Commun. Contemp. Math., 14:1 (2012), 1250005 | DOI | MR | Zbl

[30] Sickel W., Triebel H., “Hölder inequalities and sharp embeddings in function spaces of $B^s_{p,q}$ and $F^s_{p,q}$ type”, Z. Anal. Anwend., 14 (1995), 105–140 | DOI | MR | Zbl

[31] Skrzypczak L., “Rotation invariant subspaces of Besov and Triebel–Lizorkin spaces: compactness of embeddings, smoothness and decay properties”, Rev. Mat. Iberoamer., 18 (2002), 267–299 | DOI | MR | Zbl

[32] Strauss W.A., “Existence of solitary waves in higher dimensions”, Commun. Math. Phys., 55 (1977), 149–162 | DOI | MR | Zbl

[33] Triebel H., Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam, 1978 | MR | Zbl

[34] Triebel H., Theory of function spaces, Birkhäuser, Basel, 1983 | MR | Zbl

[35] Triebel H., Theory of function spaces. II, Birkhäuser, Basel, 1992 | MR | Zbl

[36] Triebel H., Theory of function spaces. III, Birkhäuser, Basel, 2006 | MR | Zbl

[37] Vybíral J., “Widths of embeddings in function spaces”, J. Complexity, 24 (2008), 545–570 | DOI | MR | Zbl

[38] Ziemer W.P., Weakly differentiable functions: Sobolev spaces and functions of bounded variation, Springer, Berlin, 1989 | MR