Distribution of zeros of the Hermite--Pad\'e polynomials for a~system of three functions, and the Nuttall condenser
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 176-199

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known approach of J. Nuttall to the derivation of strong asymptotic formulas for the Hermite–Padé polynomials for a set of $m$ multivalued functions is based on the conjecture that there exists a canonical (in the sense of decomposition into sheets) $m$-sheeted Riemann surface possessing certain properties. In this paper, for $m=3$, we introduce a notion of an abstract Nuttall condenser and describe a procedure for constructing (based on this condenser) a three-sheeted Riemann surface $\mathfrak R_3$ that has a canonical decomposition. We consider a system of three functions $\mathfrak f_1,\mathfrak f_2,\mathfrak f_3$ that are rational on the constructed Riemann surface and satisfy the independence condition $\det\bigl[\mathfrak f_k(z^{(j)})\bigr]\not\equiv0$. In the case of $m=3$, we refine the main theorem from Nuttall's paper of 1981. In particular, we show that in this case the complement $\overline{\mathbb C}\setminus B$ of the open (possibly, disconnected) set $B\subset\overline{\mathbb C}$ introduced in Nuttall's paper consists of a finite number of analytic arcs. We also propose a new conjecture concerning strong asymptotic formulas for the Padé approximants.
@article{TM_2014_284_a11,
     author = {R. K. Kovacheva and S. P. Suetin},
     title = {Distribution of zeros of the {Hermite--Pad\'e} polynomials for a~system of three functions, and the {Nuttall} condenser},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {176--199},
     publisher = {mathdoc},
     volume = {284},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_284_a11/}
}
TY  - JOUR
AU  - R. K. Kovacheva
AU  - S. P. Suetin
TI  - Distribution of zeros of the Hermite--Pad\'e polynomials for a~system of three functions, and the Nuttall condenser
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 176
EP  - 199
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_284_a11/
LA  - ru
ID  - TM_2014_284_a11
ER  - 
%0 Journal Article
%A R. K. Kovacheva
%A S. P. Suetin
%T Distribution of zeros of the Hermite--Pad\'e polynomials for a~system of three functions, and the Nuttall condenser
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 176-199
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_284_a11/
%G ru
%F TM_2014_284_a11
R. K. Kovacheva; S. P. Suetin. Distribution of zeros of the Hermite--Pad\'e polynomials for a~system of three functions, and the Nuttall condenser. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 176-199. http://geodesic.mathdoc.fr/item/TM_2014_284_a11/