Nonlinear approximations of classes of periodic functions of many variables
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 8-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

Order-sharp estimates are established for the best $N$-term approximations of functions in the classes $\mathrm B^{sm}_{pq}(\mathbb T^k)$ and $\mathrm L^{sm}_{pq}(\mathbb T^k)$ of Nikol'skii–Besov and Lizorkin–Triebel types with respect to the multiple system $\widetilde {\mathcal W}^m$ of Meyer wavelets in the metric of $L_r(\mathbb T^k)$ for various relations between the parameters $s,p,q,r$, and $m$ ($s=(s_1,\dots,s_n)\in\mathbb R^n_+$, $1\leq p,q,r\leq\infty$, $m=(m_1,\dots,m_n)\in\mathbb N^n$, and $k=m_1+\dots+m_n$). The proof of upper estimates is based on variants of the so-called greedy algorithms.
@article{TM_2014_284_a1,
     author = {D. B. Bazarkhanov},
     title = {Nonlinear approximations of classes of periodic functions of many variables},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {8--37},
     publisher = {mathdoc},
     volume = {284},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_284_a1/}
}
TY  - JOUR
AU  - D. B. Bazarkhanov
TI  - Nonlinear approximations of classes of periodic functions of many variables
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 8
EP  - 37
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_284_a1/
LA  - ru
ID  - TM_2014_284_a1
ER  - 
%0 Journal Article
%A D. B. Bazarkhanov
%T Nonlinear approximations of classes of periodic functions of many variables
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 8-37
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_284_a1/
%G ru
%F TM_2014_284_a1
D. B. Bazarkhanov. Nonlinear approximations of classes of periodic functions of many variables. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 8-37. http://geodesic.mathdoc.fr/item/TM_2014_284_a1/

[1] Stechkin S.B., “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, DAN SSSR, 102:1 (1955), 37–40 | Zbl

[2] DeVore R.A., “Nonlinear approximation”, Acta numer., 7 (1998), 51–150 | DOI | MR | Zbl

[3] Temlyakov V.N., “Nonlinear methods of approximation”, Found. Comput. Math., 3:1 (2003), 33–107 | DOI | MR | Zbl

[4] Temlyakov V.N., “Greedy approximation”, Acta numer., 17 (2008), 235–409 | DOI | MR | Zbl

[5] Bazarkhanov D.B., “Priblizhenie vspleskami i poperechniki Fure klassov periodicheskikh funktsii mnogikh peremennykh. I”, Tr. MIAN, 269, 2010, 8–30 | MR | Zbl

[6] Meyer Y., Wavelets and operators, Cambridge Stud. Adv. Math, 37, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[7] Bazarkhanov D.B., “Predstavleniya i kharakterizatsii nekotorykh funktsionalnykh prostranstv”, Mat. zhurn. Almaty, 12:3 (2012), 41–49

[8] Bazarkhanov D.B., “Priblizhenie vspleskami i poperechniki Fure klassov periodicheskikh funktsii mnogikh peremennykh. II”, Anal. math., 38:4 (2012), 249–289 | DOI | MR | Zbl

[9] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, 2-e izd., Nauka, M., 1977 | MR

[10] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, 2-e izd., Nauka, M., 1996 | MR

[11] Amanov T.I., Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, Nauka, Alma-Ata, 1976 | MR

[12] Schmeisser H.-J., Triebel H., Topics in Fourier analysis and function spaces, J. Wiley Sons, Chichester, 1987 | MR | Zbl

[13] Hansen M., Vybiral J., “The Jawerth–Franke embedding of spaces with dominating mixed smoothness”, Georgian Math. J., 16:4 (2009), 667–682 | MR | Zbl

[14] Temlyakov V.N., “Greedy algorithms with regard to multivariate systems with special structure”, Constr. Approx., 16:3 (2000), 399–425 | DOI | MR | Zbl

[15] Hansen M., Sickel W., “Best $m$-term approximation and tensor product of Sobolev and Besov spaces—the case of non-compact embeddings”, East J. Approx., 16:4 (2010), 345–388 | MR | Zbl

[16] Hansen M., Sickel W., “Best $m$-term approximation and Sobolev–Besov spaces of dominating mixed smoothness—the case of compact embeddings”, Constr. Approx., 36:1 (2012), 1–51 | DOI | MR | Zbl

[17] Romanyuk A.S., “Priblizhenie klassov periodicheskikh funktsii mnogikh peremennykh”, Mat. zametki, 71:1 (2002), 109–121 | DOI | MR | Zbl

[18] Romanyuk A.S., “Nailuchshie $M$-chlennye trigonometricheskie priblizheniya klassov Besova periodicheskikh funktsii mnogikh peremennykh”, Izv. RAN. Ser. mat., 67:2 (2003), 61–100 | DOI | MR | Zbl

[19] Romanyuk A.S., “Bilineinye i trigonometricheskie priblizheniya klassov Besova $B_{p,\theta }^r$ periodicheskikh funktsii mnogikh peremennykh”, Izv. RAN. Ser. mat., 70:2 (2006), 69–98 | DOI | MR | Zbl

[20] Romanyuk A.S., “Nailuchshie trigonometricheskie priblizheniya klassov periodicheskikh funktsii mnogikh peremennykh v ravnomernoi metrike”, Mat. zametki, 82:2 (2007), 247–261 | DOI | MR | Zbl

[21] Bazarkhanov D.B., “Otsenki nekotorykh approksimativnykh kharakteristik prostranstv Nikolskogo–Besova obobschennoi smeshannoi gladkosti”, DAN, 426:1 (2009), 11–14 | MR | Zbl