Nonlinear approximations of classes of periodic functions of many variables
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 8-37

Voir la notice de l'article provenant de la source Math-Net.Ru

Order-sharp estimates are established for the best $N$-term approximations of functions in the classes $\mathrm B^{sm}_{pq}(\mathbb T^k)$ and $\mathrm L^{sm}_{pq}(\mathbb T^k)$ of Nikol'skii–Besov and Lizorkin–Triebel types with respect to the multiple system $\widetilde {\mathcal W}^m$ of Meyer wavelets in the metric of $L_r(\mathbb T^k)$ for various relations between the parameters $s,p,q,r$, and $m$ ($s=(s_1,\dots,s_n)\in\mathbb R^n_+$, $1\leq p,q,r\leq\infty$, $m=(m_1,\dots,m_n)\in\mathbb N^n$, and $k=m_1+\dots+m_n$). The proof of upper estimates is based on variants of the so-called greedy algorithms.
@article{TM_2014_284_a1,
     author = {D. B. Bazarkhanov},
     title = {Nonlinear approximations of classes of periodic functions of many variables},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {8--37},
     publisher = {mathdoc},
     volume = {284},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_284_a1/}
}
TY  - JOUR
AU  - D. B. Bazarkhanov
TI  - Nonlinear approximations of classes of periodic functions of many variables
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 8
EP  - 37
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_284_a1/
LA  - ru
ID  - TM_2014_284_a1
ER  - 
%0 Journal Article
%A D. B. Bazarkhanov
%T Nonlinear approximations of classes of periodic functions of many variables
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 8-37
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_284_a1/
%G ru
%F TM_2014_284_a1
D. B. Bazarkhanov. Nonlinear approximations of classes of periodic functions of many variables. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 8-37. http://geodesic.mathdoc.fr/item/TM_2014_284_a1/