Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2014_284_a1, author = {D. B. Bazarkhanov}, title = {Nonlinear approximations of classes of periodic functions of many variables}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {8--37}, publisher = {mathdoc}, volume = {284}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2014_284_a1/} }
TY - JOUR AU - D. B. Bazarkhanov TI - Nonlinear approximations of classes of periodic functions of many variables JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 8 EP - 37 VL - 284 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2014_284_a1/ LA - ru ID - TM_2014_284_a1 ER -
D. B. Bazarkhanov. Nonlinear approximations of classes of periodic functions of many variables. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 8-37. http://geodesic.mathdoc.fr/item/TM_2014_284_a1/
[1] Stechkin S.B., “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, DAN SSSR, 102:1 (1955), 37–40 | Zbl
[2] DeVore R.A., “Nonlinear approximation”, Acta numer., 7 (1998), 51–150 | DOI | MR | Zbl
[3] Temlyakov V.N., “Nonlinear methods of approximation”, Found. Comput. Math., 3:1 (2003), 33–107 | DOI | MR | Zbl
[4] Temlyakov V.N., “Greedy approximation”, Acta numer., 17 (2008), 235–409 | DOI | MR | Zbl
[5] Bazarkhanov D.B., “Priblizhenie vspleskami i poperechniki Fure klassov periodicheskikh funktsii mnogikh peremennykh. I”, Tr. MIAN, 269, 2010, 8–30 | MR | Zbl
[6] Meyer Y., Wavelets and operators, Cambridge Stud. Adv. Math, 37, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[7] Bazarkhanov D.B., “Predstavleniya i kharakterizatsii nekotorykh funktsionalnykh prostranstv”, Mat. zhurn. Almaty, 12:3 (2012), 41–49
[8] Bazarkhanov D.B., “Priblizhenie vspleskami i poperechniki Fure klassov periodicheskikh funktsii mnogikh peremennykh. II”, Anal. math., 38:4 (2012), 249–289 | DOI | MR | Zbl
[9] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, 2-e izd., Nauka, M., 1977 | MR
[10] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, 2-e izd., Nauka, M., 1996 | MR
[11] Amanov T.I., Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, Nauka, Alma-Ata, 1976 | MR
[12] Schmeisser H.-J., Triebel H., Topics in Fourier analysis and function spaces, J. Wiley Sons, Chichester, 1987 | MR | Zbl
[13] Hansen M., Vybiral J., “The Jawerth–Franke embedding of spaces with dominating mixed smoothness”, Georgian Math. J., 16:4 (2009), 667–682 | MR | Zbl
[14] Temlyakov V.N., “Greedy algorithms with regard to multivariate systems with special structure”, Constr. Approx., 16:3 (2000), 399–425 | DOI | MR | Zbl
[15] Hansen M., Sickel W., “Best $m$-term approximation and tensor product of Sobolev and Besov spaces—the case of non-compact embeddings”, East J. Approx., 16:4 (2010), 345–388 | MR | Zbl
[16] Hansen M., Sickel W., “Best $m$-term approximation and Sobolev–Besov spaces of dominating mixed smoothness—the case of compact embeddings”, Constr. Approx., 36:1 (2012), 1–51 | DOI | MR | Zbl
[17] Romanyuk A.S., “Priblizhenie klassov periodicheskikh funktsii mnogikh peremennykh”, Mat. zametki, 71:1 (2002), 109–121 | DOI | MR | Zbl
[18] Romanyuk A.S., “Nailuchshie $M$-chlennye trigonometricheskie priblizheniya klassov Besova periodicheskikh funktsii mnogikh peremennykh”, Izv. RAN. Ser. mat., 67:2 (2003), 61–100 | DOI | MR | Zbl
[19] Romanyuk A.S., “Bilineinye i trigonometricheskie priblizheniya klassov Besova $B_{p,\theta }^r$ periodicheskikh funktsii mnogikh peremennykh”, Izv. RAN. Ser. mat., 70:2 (2006), 69–98 | DOI | MR | Zbl
[20] Romanyuk A.S., “Nailuchshie trigonometricheskie priblizheniya klassov periodicheskikh funktsii mnogikh peremennykh v ravnomernoi metrike”, Mat. zametki, 82:2 (2007), 247–261 | DOI | MR | Zbl
[21] Bazarkhanov D.B., “Otsenki nekotorykh approksimativnykh kharakteristik prostranstv Nikolskogo–Besova obobschennoi smeshannoi gladkosti”, DAN, 426:1 (2009), 11–14 | MR | Zbl