Boundedness and compactness of a~supremum-involving integral operator
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 142-154

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain criteria of boundedness and compactness of a supremum-involving integral operator in Lebesgue spaces on a half-axis.
@article{TM_2013_283_a9,
     author = {D. V. Prokhorov},
     title = {Boundedness and compactness of a~supremum-involving integral operator},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {142--154},
     publisher = {mathdoc},
     volume = {283},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a9/}
}
TY  - JOUR
AU  - D. V. Prokhorov
TI  - Boundedness and compactness of a~supremum-involving integral operator
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 142
EP  - 154
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_283_a9/
LA  - ru
ID  - TM_2013_283_a9
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%T Boundedness and compactness of a~supremum-involving integral operator
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 142-154
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_283_a9/
%G ru
%F TM_2013_283_a9
D. V. Prokhorov. Boundedness and compactness of a~supremum-involving integral operator. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 142-154. http://geodesic.mathdoc.fr/item/TM_2013_283_a9/