Differential inclusions with measurable-pseudo-Lipschitz right-hand side
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 121-141

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain existence theorems and Filippov–Ważewski type relaxation theorems for differential inclusions in Banach spaces with measurable-pseudo-Lipschitz right-hand side. For the solution sets of these differential inclusions, we also describe some properties that extend classical theorems on continuous dependence and on differentiation of solutions with respect to initial data.
@article{TM_2013_283_a8,
     author = {E. S. Polovinkin},
     title = {Differential inclusions with {measurable-pseudo-Lipschitz} right-hand side},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {121--141},
     publisher = {mathdoc},
     volume = {283},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a8/}
}
TY  - JOUR
AU  - E. S. Polovinkin
TI  - Differential inclusions with measurable-pseudo-Lipschitz right-hand side
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 121
EP  - 141
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_283_a8/
LA  - ru
ID  - TM_2013_283_a8
ER  - 
%0 Journal Article
%A E. S. Polovinkin
%T Differential inclusions with measurable-pseudo-Lipschitz right-hand side
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 121-141
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_283_a8/
%G ru
%F TM_2013_283_a8
E. S. Polovinkin. Differential inclusions with measurable-pseudo-Lipschitz right-hand side. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 121-141. http://geodesic.mathdoc.fr/item/TM_2013_283_a8/