Differential inclusions with measurable-pseudo-Lipschitz right-hand side
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 121-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain existence theorems and Filippov–Ważewski type relaxation theorems for differential inclusions in Banach spaces with measurable-pseudo-Lipschitz right-hand side. For the solution sets of these differential inclusions, we also describe some properties that extend classical theorems on continuous dependence and on differentiation of solutions with respect to initial data.
@article{TM_2013_283_a8,
     author = {E. S. Polovinkin},
     title = {Differential inclusions with {measurable-pseudo-Lipschitz} right-hand side},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {121--141},
     publisher = {mathdoc},
     volume = {283},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a8/}
}
TY  - JOUR
AU  - E. S. Polovinkin
TI  - Differential inclusions with measurable-pseudo-Lipschitz right-hand side
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 121
EP  - 141
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_283_a8/
LA  - ru
ID  - TM_2013_283_a8
ER  - 
%0 Journal Article
%A E. S. Polovinkin
%T Differential inclusions with measurable-pseudo-Lipschitz right-hand side
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 121-141
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_283_a8/
%G ru
%F TM_2013_283_a8
E. S. Polovinkin. Differential inclusions with measurable-pseudo-Lipschitz right-hand side. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 121-141. http://geodesic.mathdoc.fr/item/TM_2013_283_a8/

[1] Filippov A.F., “Klassicheskie resheniya differentsialnykh uravnenii s mnogoznachnoi pravoi chastyu”, Vestn. Mosk. un-ta. Matematika, mekhanika, 1967, no. 3, 16–26 | Zbl

[2] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[3] Ważewski T., “Sur une condition équivalente à l'équation au contingent”, Bull. Acad. Polon. Sci. Sér. Sci. math. astron. phys., 9 (1961), 865–867 | MR

[4] Polovinkin E.S., Smirnov G.V., “Differentsirovanie mnogoznachnykh otobrazhenii i svoistva reshenii differentsialnykh vklyuchenii”, DAN SSSR, 288:2 (1986), 296–301 | MR | Zbl

[5] Polovinkin E.S., Smirnov G.V., “Ob odnom podkhode k differentsirovaniyu mnogoznachnykh otobrazhenii i neobkhodimye usloviya optimalnosti reshenii differentsialnykh vklyuchenii”, Dif. uravneniya, 22:6 (1986), 944–954 | MR | Zbl

[6] Polovinkin E.S., Smirnov G.V., “O zadache bystrodeistviya dlya differentsialnykh vklyuchenii”, Dif. uravneniya, 22:8 (1986), 1351–1365 | MR | Zbl

[7] Polovinkin E.S., “The properties of continuity and differentiation of solution sets of Lipschitzean differential inclusions // Modeling, estimation and control of systems with uncertainty”, Prog. Syst. Control Theory, 10, eds. G.B. Di Masi, A. Gombani, A.B. Kurzhansky, Birkhäuser, Boston, 1991, 349–360 | MR

[8] Polovinkin E.S., “Necessary conditions for optimization problems with differential inclusions”, Set-valued analysis and differential inclusions, Prog. Syst. Control Theory, 16, eds. A.B. Kurzhanski, V.M. Veliov, Birkhäuser, Boston, 1993, 157–170 | MR | Zbl

[9] Polovinkin E.S., “Neobkhodimye usloviya v zadache optimizatsii s differentsialnym vklyucheniem”, Tr. MIAN, 211, 1995, 387–400 | MR | Zbl

[10] Polovinkin E.S., “Teorema suschestvovaniya reshenii differentsialnogo vklyucheniya s psevdolipshitsevoi pravoi chastyu”, Nelineinyi mir, 10:9 (2012), 571–578

[11] Polovinkin E.S., “O nekotorykh svoistvakh proizvodnykh mnogoznachnykh otobrazhenii”, Tr. MFTI, 4:4 (2012), 141–154

[12] Polovinkin E.S., “O vychislenii polyarnogo konusa k mnozhestvu reshenii differentsialnogo vklyucheniya”, Tr. MIAN, 278, 2012, 178–187 | MR

[13] Polovinkin E., “On differentiation of set-valued functions and differential inclusions”, Constructive nonsmooth analysis and related topics, Abstr. Int. Conf., St. Petersburg, 2012, St. Petersburg Univ., St. Petersburg, 2012, 134–137

[14] Aubin J.-P., “Lipschitz behavior of solutions to convex minimization problems”, Math. Oper. Res., 9 (1984), 87–111 | DOI | MR | Zbl

[15] Castaing C., “Sur les multi-applications mesurables”, Rev. Franç. Inform. Rech. Opér., 1:1 (1967), 91–126 | MR | Zbl

[16] Pliś A., “Trajectories and quasitrajectories of an orientor field”, Bull. Acad. Polon. Sci. Sér. Sci. math. astron. phys., 11 (1963), 369–370 | MR | Zbl

[17] Aumann R.J., “Integrals of set-valued functions”, J. Math. Anal. Appl., 12 (1965), 1–12 | DOI | MR | Zbl

[18] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhäuser, Boston; Basel; Berlin, 1990 | MR | Zbl

[19] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[20] Polovinkin E.S., Balashov M.V., Elementy vypuklogo i silno vypuklogo analiza, 2-e izd., Fizmatlit, M., 2007 | Zbl

[21] Fryszkowski A., “Carathéodory type selectors of set-valued maps of two variables”, Bull. Acad. Polon. Sci. Sér. Sci. math. astron. phys., 25 (1977), 41–46 | MR | Zbl