Estimation of the uniform modulus of continuity of the generalized Bessel potential
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 80-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study generalized Bessel potentials constructed by means of convolutions of functions with kernels that generalize the classical Bessel–Macdonald kernels. In contrast to the classical case, nonpower singularities of kernels in a neighborhood of the origin are admitted. The integral properties of functions are characterized in terms of decreasing rearrangements. The differential properties of potentials are described by the $k$th-order moduli of continuity in the uniform norm. An order-sharp upper estimate is established for the modulus of continuity of a potential. Such estimates play an important role in the theory of function spaces. They allow one to establish sharp embedding theorems for potentials, find majorants of the moduli of continuity, and estimate the approximation numbers of embedding operators.
@article{TM_2013_283_a5,
     author = {M. L. Goldman and A. V. Malysheva},
     title = {Estimation of the uniform modulus of continuity of the generalized {Bessel} potential},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {80--91},
     publisher = {mathdoc},
     volume = {283},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a5/}
}
TY  - JOUR
AU  - M. L. Goldman
AU  - A. V. Malysheva
TI  - Estimation of the uniform modulus of continuity of the generalized Bessel potential
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 80
EP  - 91
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_283_a5/
LA  - ru
ID  - TM_2013_283_a5
ER  - 
%0 Journal Article
%A M. L. Goldman
%A A. V. Malysheva
%T Estimation of the uniform modulus of continuity of the generalized Bessel potential
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 80-91
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_283_a5/
%G ru
%F TM_2013_283_a5
M. L. Goldman; A. V. Malysheva. Estimation of the uniform modulus of continuity of the generalized Bessel potential. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 80-91. http://geodesic.mathdoc.fr/item/TM_2013_283_a5/

[1] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[2] Stein I.M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[3] Bennett C., Sharpley R., Interpolation of operators, Acad. Press, New York, 1988 | MR

[4] Gogatishvili A., Neves J. S., Opic B., “Sharp estimates of the $k$-modulus of smoothness of Bessel potentials”, J. London Math. Soc. Ser. 2, 81:3 (2010), 608–624 | DOI | MR | Zbl

[5] Gogatishvili A., Neves J. S., Opic B., “Compact embeddings of Bessel-potential-type spaces into generalized Hölder spaces involving $k$-modulus of smoothness”, Z. Anal. Anwend., 30 (2011), 1–27 | DOI | MR | Zbl

[6] Haroske D.D., Moura S.D., “Continuity envelopes of spaces of generalized smoothness, entropy and approximation numbers”, J. Approx. Theory, 128:2 (2004), 151–174 | DOI | MR | Zbl

[7] Goldman M. L., “Ob optimalnykh vlozheniyakh obobschennykh potentsialov Besselya i Rissa”, Tr. MIAN, 269, 2010, 91–111 | MR | Zbl

[8] Goldman M. L., “Some constructive criteria of optimal embeddings for potentials”, Complex Var. Elliptic Eqns., 56:10–11 (2011), 885–903 | DOI | MR | Zbl

[9] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii: Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1966 | MR