Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2013_283_a2, author = {V. M. Filippov and V. M. Savchin and S. A. Budochkina}, title = {On the existence of variational principles for differential--difference evolution equations}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {25--39}, publisher = {mathdoc}, volume = {283}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a2/} }
TY - JOUR AU - V. M. Filippov AU - V. M. Savchin AU - S. A. Budochkina TI - On the existence of variational principles for differential--difference evolution equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 25 EP - 39 VL - 283 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2013_283_a2/ LA - ru ID - TM_2013_283_a2 ER -
%0 Journal Article %A V. M. Filippov %A V. M. Savchin %A S. A. Budochkina %T On the existence of variational principles for differential--difference evolution equations %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2013 %P 25-39 %V 283 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2013_283_a2/ %G ru %F TM_2013_283_a2
V. M. Filippov; V. M. Savchin; S. A. Budochkina. On the existence of variational principles for differential--difference evolution equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 25-39. http://geodesic.mathdoc.fr/item/TM_2013_283_a2/
[1] Filippov V.M., Savchin V.M., Shorokhov S.G., Variatsionnye printsipy dlya nepotentsialnykh operatorov, Itogi nauki i tekhniki. Sovr. probl. matematiki. Noveishie dostizheniya, 40, VINITI, M., 1992 | MR | Zbl
[2] Savchin V.M., “An operator approach to Birkhoff's equations”, Vestn. RUDN. Matematika, 2:2 (1995), 111–123 | Zbl
[3] Savchin V.M., Budochkina S.A., “O strukture variatsionnogo uravneniya evolyutsionnogo tipa so vtoroi proizvodnoi po $t$”, Dif. uravneniya, 39:1 (2003), 118–124 | MR | Zbl
[4] Savchin V.M., Budochkina S.A., “O suschestvovanii variatsionnogo printsipa dlya operatornogo uravneniya so vtoroi proizvodnoi po vremeni”, Mat. zametki, 80:1 (2006), 87–94 | DOI | MR | Zbl
[5] Budotchkina S.A., Savchin V.M., “On indirect variational formulations for operator equations”, J. Funct. Spaces Appl., 5:3 (2007), 231–242 | DOI | MR | Zbl
[6] Myshkis A.D., Elsgolts L.E., “Sostoyanie i problemy teorii differentsialnykh uravnenii s otklonyayuschimsya argumentom”, UMN, 22:2 (1967), 21–57 | MR | Zbl
[7] Skubachevskii A.L., Elliptic functional differential equations and applications, Birkhäuser, Basel, 1997 | MR | Zbl
[8] Filippov V.M., Savchin V.M., “On the inverse problem of the calculus of variations (IPCV) for functional partial differential equations”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy matematicheskogo obrazovaniya, Tez. dokl. 2-i Mezhdunar. konf., posv. 80-letiyu L.D. Kudryavtseva, Fizmatlit, M., 2003, 235–236
[9] Popov A.M., “Usloviya potentsialnosti differentsialno-raznostnykh uravnenii”, Dif. uravneniya, 34:3 (1998), 422–424 | MR | Zbl
[10] Kolesnikova I.A., Popov A.M., Savchin V.M., “On variational formulations for functional differential equations”, J. Funct. Spaces Appl., 5:1 (2007), 89–101 | DOI | MR | Zbl
[11] Kolesnikova I.A., Savchin V.M., “On the existence of variational principles for a class of the evolutionary differential–difference equations”, J. Funct. Spaces Appl., 2012, 780382 | MR | Zbl