Boundedness of the series of absolute values of blocks of sine series
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 252-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

The series of absolute values of blocks of a sine series whose coefficients satisfy a certain weakened monotonicity condition are considered. It is shown that to ensure the bounded convergence of such a series, one can take the same blocks as for the Fourier series of functions of bounded variation.
@article{TM_2013_283_a15,
     author = {S. A. Telyakovskii},
     title = {Boundedness of the series of absolute values of blocks of sine series},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {252--256},
     publisher = {mathdoc},
     volume = {283},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a15/}
}
TY  - JOUR
AU  - S. A. Telyakovskii
TI  - Boundedness of the series of absolute values of blocks of sine series
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 252
EP  - 256
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_283_a15/
LA  - ru
ID  - TM_2013_283_a15
ER  - 
%0 Journal Article
%A S. A. Telyakovskii
%T Boundedness of the series of absolute values of blocks of sine series
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 252-256
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_283_a15/
%G ru
%F TM_2013_283_a15
S. A. Telyakovskii. Boundedness of the series of absolute values of blocks of sine series. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 252-256. http://geodesic.mathdoc.fr/item/TM_2013_283_a15/

[1] Telyakovskii S.A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 219, 1997, 378–386 | MR

[2] Bari N.K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[3] Stechkin S.B., “Ob absolyutnoi skhodimosti ryadov Fure (trete soobschenie)”, Izv. AN SSSR. Ser. mat., 20:3 (1956), 385–412 | Zbl

[4] Leindler L., “On the uniform convergence and boundedness of a certain class of sine series”, Anal. math., 27 (2001), 279–285 | DOI | MR | Zbl

[5] Le R.J., Zhou S.P., “A generalization of an important trigonometric inequality”, J. Anal. Appl., 3 (2005), 163–168 | DOI | MR | Zbl

[6] Wang M.Z., Zhao Y., “Generalizations of some classical results under MVBV condition”, Math. Inequal. Appl., 12 (2009), 433–440 | MR | Zbl

[7] Belov A.S., Telyakovskii S.A., “Usilenie teorem Dirikhle–Zhordana i Yanga o ryadakh Fure funktsii ogranichennoi variatsii”, Mat. sb., 198:6 (2007), 25–40 | DOI | MR | Zbl

[8] Telyakovskii S.A., “K voprosu o kharaktere skhodimosti ryadov Fure funktsii ogranichennoi variatsii”, Izv. vuzov. Matematika, 2010, no. 3, 48–51 | MR | Zbl