On a~class of essentially nonlinear elliptic differential--difference equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 233-251

Voir la notice de l'article provenant de la source Math-Net.Ru

An essentially nonlinear differential-difference equation containing the product of the $p$-Laplacian and a difference operator is considered. Sufficient conditions are obtained for the corresponding nonlinear differential-difference operator to be coercive and pseudomonotone in the case of nonvariational statement of the differential equation. The existence of a generalized solution to the Dirichlet problem for the nonlinear equation is proved.
@article{TM_2013_283_a14,
     author = {O. V. Solonukha},
     title = {On a~class of essentially nonlinear elliptic differential--difference equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {233--251},
     publisher = {mathdoc},
     volume = {283},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a14/}
}
TY  - JOUR
AU  - O. V. Solonukha
TI  - On a~class of essentially nonlinear elliptic differential--difference equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 233
EP  - 251
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_283_a14/
LA  - ru
ID  - TM_2013_283_a14
ER  - 
%0 Journal Article
%A O. V. Solonukha
%T On a~class of essentially nonlinear elliptic differential--difference equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 233-251
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_283_a14/
%G ru
%F TM_2013_283_a14
O. V. Solonukha. On a~class of essentially nonlinear elliptic differential--difference equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 233-251. http://geodesic.mathdoc.fr/item/TM_2013_283_a14/