On a~class of essentially nonlinear elliptic differential--difference equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 233-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

An essentially nonlinear differential-difference equation containing the product of the $p$-Laplacian and a difference operator is considered. Sufficient conditions are obtained for the corresponding nonlinear differential-difference operator to be coercive and pseudomonotone in the case of nonvariational statement of the differential equation. The existence of a generalized solution to the Dirichlet problem for the nonlinear equation is proved.
@article{TM_2013_283_a14,
     author = {O. V. Solonukha},
     title = {On a~class of essentially nonlinear elliptic differential--difference equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {233--251},
     publisher = {mathdoc},
     volume = {283},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a14/}
}
TY  - JOUR
AU  - O. V. Solonukha
TI  - On a~class of essentially nonlinear elliptic differential--difference equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 233
EP  - 251
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_283_a14/
LA  - ru
ID  - TM_2013_283_a14
ER  - 
%0 Journal Article
%A O. V. Solonukha
%T On a~class of essentially nonlinear elliptic differential--difference equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 233-251
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_283_a14/
%G ru
%F TM_2013_283_a14
O. V. Solonukha. On a~class of essentially nonlinear elliptic differential--difference equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 233-251. http://geodesic.mathdoc.fr/item/TM_2013_283_a14/

[1] Vishik M.I., Ladyzhenskaya O.A., “Kraevye zadachi dlya uravnenii v chastnykh proizvodnykh i nekotorykh klassov operatornykh uravnenii”, UMN, 11:6 (1956), 41–97 | MR | Zbl

[2] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[3] Pokhozhaev S.I., “O razreshimosti nelineinykh uravnenii s nechetnymi operatorami”, Funkts. analiz i ego pril., 1:3 (1967), 66–73 | MR | Zbl

[4] Dubinskii Yu.A., Nelineinye ellipticheskie i parabolicheskie uravneniya, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 9, VINITI, M., 1976

[5] Brézis H., “Équations et inéquations non linéaires dans les espaces vectoriels en dualitè”, Ann. Inst. Fourier., 18:1 (1968), 115–175 | DOI | MR | Zbl

[6] Browder F.E., Hess P., “Nonlinear mappings of monotone type in Banach spaces”, J. Funct. Anal., 11 (1972), 251–294 | DOI | MR | Zbl

[7] Hartman P., Stampacchia G., “On some non-linear elliptic differential–functional equations”, Acta math., 115 (1966), 271–310 | DOI | MR | Zbl

[8] Skubachevskii A.L., “The first boundary value problem for strongly elliptic differential–difference equations”, J. Diff. Eqns., 63 (1986), 332–361 | DOI | MR

[9] Skubachevskii A.L., Elliptic functional differential equations and applications, Birkhäuser, Basel, 1997 | MR | Zbl

[10] Skubachevskii A.L., “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear Anal., Theory Methods Appl., 32:2 (1998), 261–278 | DOI | MR | Zbl

[11] Razgulin A.V., “Rotational multipetal waves in optical system with 2D feedback”, Chaos in optics (San Diego, CA, 1993), Proc. SPIE, 2039, eds. R. Roy, SPIE; Int. Soc. Opt. Eng., Bellingham, WA, 1993, 342–352 | DOI

[12] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[13] Gantmakher F.R., Teoriya matrits, Nauka, M., 1967 | MR

[14] Lyusternik L.A., Sobolev V.I., Elementy funktsionalnogo analiza, GITTL, M., 1951

[15] Kadets V.M., Kurs funktsionalnogo analiza, Khark. nats. un-t, Kharkov, 2004