Uniform stability of the inverse Sturm--Liouville problem with respect to the spectral function in the scale of Sobolev spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 188-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the inverse problem of recovering the potential for the Sturm–Liouville operator $Ly=-y''+q(x)y$ on the interval $[0,\pi]$ from the spectrum of the Dirichlet problem and norming constants (from the spectral function). For a fixed $\theta\geq0$, with this problem we associate a map $F\colon W^\theta_2\to l^\theta_\mathrm D$, $F(\sigma)=\{s_k\}_1^\infty$, where $W^\theta_2= W^\theta_2[0,\pi]$ is the Sobolev space, $\sigma=\int q$ is a primitive of the potential $q\in W^{\theta-1}_2$, and $l^\theta _\mathrm D$ is a specially constructed finite-dimensional extension of the weighted space $l^\theta_2$; this extension contains the regularized spectral data $\mathbf s=\{s_k\}_1^\infty$ for the problem of recovering the potential from the spectral function. The main result consists in proving both lower and upper uniform estimates for the norm of the difference $\|\sigma-\sigma_1\|_\theta$ in terms of the $l^\theta_\mathrm D$ norm of the difference of the regularized spectral data $\|\mathbf s-\mathbf s_1\|_\theta$. The result is new even for the classical case $q\in L_2$, which corresponds to the case of $\theta=1$.
@article{TM_2013_283_a12,
     author = {A. M. Savchuk and A. A. Shkalikov},
     title = {Uniform stability of the inverse {Sturm--Liouville} problem with respect to the spectral function in the scale of {Sobolev} spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {188--203},
     publisher = {mathdoc},
     volume = {283},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a12/}
}
TY  - JOUR
AU  - A. M. Savchuk
AU  - A. A. Shkalikov
TI  - Uniform stability of the inverse Sturm--Liouville problem with respect to the spectral function in the scale of Sobolev spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 188
EP  - 203
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_283_a12/
LA  - ru
ID  - TM_2013_283_a12
ER  - 
%0 Journal Article
%A A. M. Savchuk
%A A. A. Shkalikov
%T Uniform stability of the inverse Sturm--Liouville problem with respect to the spectral function in the scale of Sobolev spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 188-203
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_283_a12/
%G ru
%F TM_2013_283_a12
A. M. Savchuk; A. A. Shkalikov. Uniform stability of the inverse Sturm--Liouville problem with respect to the spectral function in the scale of Sobolev spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 188-203. http://geodesic.mathdoc.fr/item/TM_2013_283_a12/

[1] Borg G., “Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte”, Acta math., 78 (1946), 1–96 | DOI | MR | Zbl

[2] Freiling G., Yurko V., Inverse Sturm–Liouville problems and their applications, Nova Sci. Publ., Huntington, NY, 2001 | MR | Zbl

[3] Gelfand I.M., Levitan B.M., “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izv. AN SSSR. Ser. mat., 15:4 (1951), 309–360 | MR | Zbl

[4] Gokhberg I.Ts., Krein M.G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[5] Griniv R.O., “Ravnomerno ogranichennye semeistva bazisov Rissa iz eksponent, sinusov i kosinusov”, Mat. zametki, 87:4 (2010), 542–553 | DOI | MR

[6] Hryniv R.O., “Analyticity and uniform stability in the inverse spectral problem for impedance Sturm–Liouville operators”, Carpathian Math. Publ., 2:1 (2010), 35–58

[7] Hryniv R.O., “Analyticity and uniform stability in the inverse singular Sturm–Liouville spectral problem”, Inverse Probl., 27:6 (2011), 065011 | DOI | MR | Zbl

[8] Hryniv R.O., Mykytyuk Ya.V., “Inverse spectral problems for Sturm–Liouville operators with singular potentials”, Inverse Probl., 19:3 (2003), 665–684 | DOI | MR | Zbl

[9] Hryniv R.O., Mykytyuk Ya.V., “Transformation operators for Sturm–Liouville operators with singular potentials”, Math. Phys. Anal. Geom., 7 (2004), 119–149 | DOI | MR | Zbl

[10] Hryniv R.O., Mykytyuk Ya.V., “Inverse spectral problems for Sturm–Liouville operators with singular potentials. IV: Potentials in the Sobolev space scale”, Proc. Edinburgh Math. Soc. Ser. 2, 49:2 (2006), 309–329 | DOI | MR | Zbl

[11] Levitan B.M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR

[12] Marchenko V.A., “Nekotorye voprosy teorii differentsialnogo operatora vtorogo poryadka”, DAN SSSR, 72:3 (1950), 457–460 | MR | Zbl

[13] Pöschel J., Trubowitz E., Inverse spectral theory, Acad. Press, Boston, 1987 | MR | Zbl

[14] Savchuk A.M., Shkalikov A.A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Mat. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl

[15] Savchuk A.M., Shkalikov A.A., “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. Mosk. mat. o-va, 64, 2003, 159–219 | MR

[16] Savchuk A.M., Shkalikov A.A., “Inverse problem for Sturm–Liouville operators with distribution potentials: Reconstruction from two spectra”, Russ. J. Math. Phys., 12 (2005), 507–514 | MR | Zbl

[17] Savchuk A.M., Shkalikov A.A., “O sobstvennykh znacheniyakh operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva”, Mat. zametki, 80:6 (2006), 864–884 | DOI | MR | Zbl

[18] Savchuk A.M., Shkalikov A.A., “O svoistvakh otobrazhenii, svyazannykh s obratnymi zadachami Shturma–Liuvillya”, Tr. MIAN, 260, 2008, 227–247 | MR | Zbl

[19] Savchuk A.M., Shkalikov A.A., “Obratnye zadachi dlya operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva. Ravnomernaya ustoichivost”, Funkts. analiz i ego pril., 44:4 (2010), 34–53 | DOI | MR | Zbl

[20] Savchuk A.M., Shkalikov A.A., Svoistva otobrazheniya, svyazannogo s vosstanovleniem operatora Shturma–Liuvillya po spektralnoi funktsii. Ravnomernaya ustoichivost v shkale sobolevskikh prostranstv, E-print, 2010, arXiv: 1010.5344v1 | MR

[21] Savchuk A.M., Shkalikov A.A., “Ob interpolyatsii analiticheskikh otobrazhenii”, Mat. zametki, 94:4 (2013), 578–581 | DOI | Zbl