Uniform stability of the inverse Sturm--Liouville problem with respect to the spectral function in the scale of Sobolev spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 188-203

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the inverse problem of recovering the potential for the Sturm–Liouville operator $Ly=-y''+q(x)y$ on the interval $[0,\pi]$ from the spectrum of the Dirichlet problem and norming constants (from the spectral function). For a fixed $\theta\geq0$, with this problem we associate a map $F\colon W^\theta_2\to l^\theta_\mathrm D$, $F(\sigma)=\{s_k\}_1^\infty$, where $W^\theta_2= W^\theta_2[0,\pi]$ is the Sobolev space, $\sigma=\int q$ is a primitive of the potential $q\in W^{\theta-1}_2$, and $l^\theta _\mathrm D$ is a specially constructed finite-dimensional extension of the weighted space $l^\theta_2$; this extension contains the regularized spectral data $\mathbf s=\{s_k\}_1^\infty$ for the problem of recovering the potential from the spectral function. The main result consists in proving both lower and upper uniform estimates for the norm of the difference $\|\sigma-\sigma_1\|_\theta$ in terms of the $l^\theta_\mathrm D$ norm of the difference of the regularized spectral data $\|\mathbf s-\mathbf s_1\|_\theta$. The result is new even for the classical case $q\in L_2$, which corresponds to the case of $\theta=1$.
@article{TM_2013_283_a12,
     author = {A. M. Savchuk and A. A. Shkalikov},
     title = {Uniform stability of the inverse {Sturm--Liouville} problem with respect to the spectral function in the scale of {Sobolev} spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {188--203},
     publisher = {mathdoc},
     volume = {283},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a12/}
}
TY  - JOUR
AU  - A. M. Savchuk
AU  - A. A. Shkalikov
TI  - Uniform stability of the inverse Sturm--Liouville problem with respect to the spectral function in the scale of Sobolev spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 188
EP  - 203
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_283_a12/
LA  - ru
ID  - TM_2013_283_a12
ER  - 
%0 Journal Article
%A A. M. Savchuk
%A A. A. Shkalikov
%T Uniform stability of the inverse Sturm--Liouville problem with respect to the spectral function in the scale of Sobolev spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 188-203
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_283_a12/
%G ru
%F TM_2013_283_a12
A. M. Savchuk; A. A. Shkalikov. Uniform stability of the inverse Sturm--Liouville problem with respect to the spectral function in the scale of Sobolev spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 188-203. http://geodesic.mathdoc.fr/item/TM_2013_283_a12/