Multitype subcritical branching processes in a~random environment
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 87-97

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a multitype Galton–Watson process in a random environment generated by a sequence of independent identically distributed random variables. Assuming that the mean of the increment $X$ of the associated random walk constructed by the logarithms of the Perron roots of the reproduction mean matrices is negative and the random variable $Xe^X$ has zero mean, we find the asymptotics of the survival probability at time $n$ as $n\to\infty$.
@article{TM_2013_282_a7,
     author = {E. E. Dyakonova},
     title = {Multitype subcritical branching processes in a~random environment},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {87--97},
     publisher = {mathdoc},
     volume = {282},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_282_a7/}
}
TY  - JOUR
AU  - E. E. Dyakonova
TI  - Multitype subcritical branching processes in a~random environment
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 87
EP  - 97
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_282_a7/
LA  - ru
ID  - TM_2013_282_a7
ER  - 
%0 Journal Article
%A E. E. Dyakonova
%T Multitype subcritical branching processes in a~random environment
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 87-97
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_282_a7/
%G ru
%F TM_2013_282_a7
E. E. Dyakonova. Multitype subcritical branching processes in a~random environment. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 87-97. http://geodesic.mathdoc.fr/item/TM_2013_282_a7/