Multitype subcritical branching processes in a~random environment
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 87-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a multitype Galton–Watson process in a random environment generated by a sequence of independent identically distributed random variables. Assuming that the mean of the increment $X$ of the associated random walk constructed by the logarithms of the Perron roots of the reproduction mean matrices is negative and the random variable $Xe^X$ has zero mean, we find the asymptotics of the survival probability at time $n$ as $n\to\infty$.
@article{TM_2013_282_a7,
     author = {E. E. Dyakonova},
     title = {Multitype subcritical branching processes in a~random environment},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {87--97},
     publisher = {mathdoc},
     volume = {282},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_282_a7/}
}
TY  - JOUR
AU  - E. E. Dyakonova
TI  - Multitype subcritical branching processes in a~random environment
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 87
EP  - 97
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_282_a7/
LA  - ru
ID  - TM_2013_282_a7
ER  - 
%0 Journal Article
%A E. E. Dyakonova
%T Multitype subcritical branching processes in a~random environment
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 87-97
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_282_a7/
%G ru
%F TM_2013_282_a7
E. E. Dyakonova. Multitype subcritical branching processes in a~random environment. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 87-97. http://geodesic.mathdoc.fr/item/TM_2013_282_a7/

[1] Afanasyev V.I., Böinghoff C., Kersting G., Vatutin V.A., “Limit theorems for weakly subcritical branching processes in random environment”, J. Theor. Probab., 25 (2012), 703–732 | DOI | MR | Zbl

[2] Afanasyev V.I., Böinghoff C., Kersting G., Vatutin V.A., “Conditional limit theorems for intermediately subcritical branching processes in random environment”, Ann. Inst. Henri Poincaré. Probab. Stat. (to appear) , arXiv: 1108.2127 [math.PR]

[3] Afanasyev V.I., Geiger J., Kersting G., Vatutin V.A., “Criticality for branching processes in random environment”, Ann. Probab., 33 (2005), 645–673 | DOI | MR | Zbl

[4] Afanasyev V.I., Geiger J., Kersting G., Vatutin V.A., “Functional limit theorems for strongly subcritical branching processes in random environment”, Stoch. Processes Appl., 115 (2005), 1658–1676 | DOI | MR | Zbl

[5] Agresti A., “On the extinction times of varying and random environment branching processes”, J. Appl. Probab., 12 (1975), 39–46 | DOI | MR | Zbl

[6] Dyakonova E., “On subcritical multi-type branching process in random environment”, Algorithms, trees, combinatorics and probabilities, Proc. Fifth Colloquium on Mathematics and Computer Science, DMTCS, Nancy, 2008, 401–408 | MR

[7] Geiger J., Kersting G., Vatutin V.A., “Limit theorems for subcritical branching processes in random environment”, Ann. Inst. Henri Poincaré. Probab. Stat., 39 (2003), 593–620 | DOI | MR | Zbl

[8] Vatutin V.A., “Predelnaya teorema dlya promezhutochno dokriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Teoriya veroyatn. i ee primen., 48:3 (2003), 453–465 | DOI | MR | Zbl

[9] Vatutin V.A., Dyakonova E.E., “Asimptoticheskie svoistva mnogotipnykh kriticheskikh vetvyaschikhsya protsessov, evolyutsioniruyuschikh v sluchainoi srede”, Diskret. matematika, 22:2 (2010), 22–40 | DOI | MR | Zbl

[10] Dyakonova E.E., “Kriticheskie mnogotipnye vetvyascheesya protsessy v sluchainoi srede”, Diskret. matematika, 19:4 (2007), 23–41 | DOI | MR | Zbl