Multitype subcritical branching processes in a~random environment
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 87-97
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate a multitype Galton–Watson process in a random environment generated by a sequence of independent identically distributed random variables. Assuming that the mean of the increment $X$ of the associated random walk constructed by the logarithms of the Perron roots of the reproduction mean matrices is negative and the random variable $Xe^X$ has zero mean, we find the asymptotics of the survival probability at time $n$ as $n\to\infty$.
@article{TM_2013_282_a7,
author = {E. E. Dyakonova},
title = {Multitype subcritical branching processes in a~random environment},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {87--97},
publisher = {mathdoc},
volume = {282},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2013_282_a7/}
}
E. E. Dyakonova. Multitype subcritical branching processes in a~random environment. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 87-97. http://geodesic.mathdoc.fr/item/TM_2013_282_a7/