Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2013_282_a5, author = {E. Vl. Bulinskaya}, title = {Subcritical catalytic branching random walk with finite or infinite variance of offspring number}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {69--79}, publisher = {mathdoc}, volume = {282}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2013_282_a5/} }
TY - JOUR AU - E. Vl. Bulinskaya TI - Subcritical catalytic branching random walk with finite or infinite variance of offspring number JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 69 EP - 79 VL - 282 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2013_282_a5/ LA - ru ID - TM_2013_282_a5 ER -
%0 Journal Article %A E. Vl. Bulinskaya %T Subcritical catalytic branching random walk with finite or infinite variance of offspring number %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2013 %P 69-79 %V 282 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2013_282_a5/ %G ru %F TM_2013_282_a5
E. Vl. Bulinskaya. Subcritical catalytic branching random walk with finite or infinite variance of offspring number. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 69-79. http://geodesic.mathdoc.fr/item/TM_2013_282_a5/
[1] Vatutin V.A., Topchii V.A., Yarovaya E.B., “Catalytic branching random walk and queueing systems with random number of independent servers”, Theory Probab. Math. Stat., 69 (2004), 1–15 | DOI | MR
[2] Albeverio S., Bogachev L.V., Yarovaya E.B., “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. r. Acad. sci. Paris. Sér. 1: Math., 326 (1998), 975–980 | DOI | MR | Zbl
[3] Yarovaya E.B., “Kriterii eksponentsialnogo rosta chisla chastits v modelyakh vetvyaschikhsya sluchainykh bluzhdanii”, Teoriya veroyatn. i ee primen., 55:4 (2010), 705–731 | DOI | MR
[4] Sevastyanov B.A., Vetvyaschiesya protsessy, Nauka, M., 1971 | MR | Zbl
[5] Yarovaya E.B., “Kriticheskie vetvyaschiesya sluchainye bluzhdaniya po reshetkam nizkikh razmernostei”, Diskret. matematika, 21:1 (2009), 117–138 | DOI | MR | Zbl
[6] Yarovaya E., “Critical and subcritical branching symmetric random walks on $d$-dimensional lattices”, Advances in data analysis: Theory and applications to reliability and inference, data mining, bioinformatics, lifetime data, and neural networks, eds. C.H. Skiadas, Birkhäuser, Boston, 2010, 157–168 | MR
[7] Bulinskaya E.Vl., “Catalytic branching random walk on three-dimensional lattice”, Theory Stoch. Processes, 16:2 (2010), 23–32 | MR | Zbl
[8] Bulinskaya E.Vl., “Predelnye raspredeleniya chislennostei chastits v vetvyaschemsya sluchainom bluzhdanii”, Mat. zametki, 90:6 (2011), 845–859 | DOI | MR | Zbl
[9] Vatutin V.A., Topchii V.A., “Kataliticheskie vetvyaschiesya sluchainye bluzhdaniya na $\mathbb Z^d$ s vetvleniem v nule”, Mat. trudy, 14:2 (2011), 28–72 | MR
[10] Vatutin V.A., Topchii V.A., Khu Yu., “Vetvyascheesya sluchainoe bluzhdanie po reshetke $\mathbb Z^4$ s vetvleniem lish v nachale koordinat”, Teoriya veroyatn. i ee primen., 56:2 (2011), 224–247 | DOI
[11] Bulinskaya E.Vl., “Limit distributions arising in branching random walks on integer lattices”, Lith. Math. J., 51:3 (2011), 310–321 | DOI | MR | Zbl
[12] Bulinskaya E.Vl., “Predelnye teoremy dlya lokalnykh chislennostei chastits v vetvyaschemsya sluchainom bluzhdanii”, DAN., 444:6 (2012), 593–596 | Zbl
[13] Yarovaya E.B., Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izd-vo Tsentra prikl. issled. pri mekh.-mat. f-te MGU, M., 2007
[14] Vatutin V.A., Vetvyaschiesya protsessy Bellmana–Kharrisa, MIAN, M., 2009
[15] Wolfe S.J., “On moments of probability distribution functions”, Fractional calculus and its applications, Lect. Notes Math., 457, Springer, Berlin, 1975, 306–316 | DOI | MR
[16] Bulinskaya E.Vl., “Kataliticheskoe vetvyascheesya sluchainoe bluzhdanie po dvumernoi reshetke”, Teoriya veroyatn. i ee primen., 55:1 (2010), 142–148 | DOI | MR
[17] Bulinskaya E.Vl., “Local particles numbers in critical branching random walk”, J. Theor. Probab., 2012 | DOI
[18] Vatutin V., Xiong J., “Some limit theorems for a particle system of single point catalytic branching random walks”, Acta math. Sin., 23:6 (2007), 997–1012 | DOI | MR | Zbl
[19] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984
[20] de Brëin N.G., Asimptoticheskie metody v analize, Izd-vo inostr. lit., M., 1961
[21] Klar B., “On a test for exponentiality against Laplace order dominance”, Statistics, 37:6 (2003), 505–515 | DOI | MR | Zbl