Random $A$-permutations and Brownian motion
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 315-335

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a random permutation $\tau _n$ uniformly distributed over the set of all degree $n$ permutations whose cycle lengths belong to a fixed set $A$ (the so-called $A$-permutations). Let $X_n(t)$ be the number of cycles of the random permutation $\tau _n$ whose lengths are not greater than $n^t$, $t\in[0,1]$, and $l(t)=\sum_{i\leq t,i\in A}1/i$, $t>0$. In this paper, we show that the finite-dimensional distributions of the random process $\{Y_n(t)=(X_n(t)-l(n^t))/\sqrt{\varrho\ln n}$, $t\in[0,1]\}$ converge weakly as $n\to\infty$ to the finite-dimensional distributions of the standard Brownian motion $\{W(t),t\in[0,1]\}$ in a certain class of sets $A$ of positive asymptotic density $\varrho$.
@article{TM_2013_282_a20,
     author = {A. L. Yakymiv},
     title = {Random $A$-permutations and {Brownian} motion},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {315--335},
     publisher = {mathdoc},
     volume = {282},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_282_a20/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - Random $A$-permutations and Brownian motion
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 315
EP  - 335
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_282_a20/
LA  - ru
ID  - TM_2013_282_a20
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T Random $A$-permutations and Brownian motion
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 315-335
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_282_a20/
%G ru
%F TM_2013_282_a20
A. L. Yakymiv. Random $A$-permutations and Brownian motion. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 315-335. http://geodesic.mathdoc.fr/item/TM_2013_282_a20/