Tail asymptotics for the supercritical Galton--Watson process in the heavy-tailed case
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 288-314

Voir la notice de l'article provenant de la source Math-Net.Ru

As is well known, for a supercritical Galton–Watson process $Z_n$ whose offspring distribution has mean $m>1$, the ratio $W_n:=Z_n/m^n$ has almost surely a limit, say $W$. We study the tail behaviour of the distributions of $W_n$ and $W$ in the case where $Z_1$ has a heavy-tailed distribution, that is, $\mathbb E\,e^{\lambda Z_1}=\infty$ for every $\lambda>0$. We show how different types of distributions of $Z_1$ lead to different asymptotic behaviour of the tail of $W_n$ and $W$. We describe the most likely way in which large values of the process occur.
@article{TM_2013_282_a19,
     author = {V. I. Wachtel and D. E. Denisov and D. A. Korshunov},
     title = {Tail asymptotics for the supercritical {Galton--Watson} process in the heavy-tailed case},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {288--314},
     publisher = {mathdoc},
     volume = {282},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_282_a19/}
}
TY  - JOUR
AU  - V. I. Wachtel
AU  - D. E. Denisov
AU  - D. A. Korshunov
TI  - Tail asymptotics for the supercritical Galton--Watson process in the heavy-tailed case
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 288
EP  - 314
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_282_a19/
LA  - ru
ID  - TM_2013_282_a19
ER  - 
%0 Journal Article
%A V. I. Wachtel
%A D. E. Denisov
%A D. A. Korshunov
%T Tail asymptotics for the supercritical Galton--Watson process in the heavy-tailed case
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 288-314
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_282_a19/
%G ru
%F TM_2013_282_a19
V. I. Wachtel; D. E. Denisov; D. A. Korshunov. Tail asymptotics for the supercritical Galton--Watson process in the heavy-tailed case. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 288-314. http://geodesic.mathdoc.fr/item/TM_2013_282_a19/