Tail asymptotics for the supercritical Galton--Watson process in the heavy-tailed case
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 288-314.

Voir la notice de l'article provenant de la source Math-Net.Ru

As is well known, for a supercritical Galton–Watson process $Z_n$ whose offspring distribution has mean $m>1$, the ratio $W_n:=Z_n/m^n$ has almost surely a limit, say $W$. We study the tail behaviour of the distributions of $W_n$ and $W$ in the case where $Z_1$ has a heavy-tailed distribution, that is, $\mathbb E\,e^{\lambda Z_1}=\infty$ for every $\lambda>0$. We show how different types of distributions of $Z_1$ lead to different asymptotic behaviour of the tail of $W_n$ and $W$. We describe the most likely way in which large values of the process occur.
@article{TM_2013_282_a19,
     author = {V. I. Wachtel and D. E. Denisov and D. A. Korshunov},
     title = {Tail asymptotics for the supercritical {Galton--Watson} process in the heavy-tailed case},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {288--314},
     publisher = {mathdoc},
     volume = {282},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_282_a19/}
}
TY  - JOUR
AU  - V. I. Wachtel
AU  - D. E. Denisov
AU  - D. A. Korshunov
TI  - Tail asymptotics for the supercritical Galton--Watson process in the heavy-tailed case
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 288
EP  - 314
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_282_a19/
LA  - ru
ID  - TM_2013_282_a19
ER  - 
%0 Journal Article
%A V. I. Wachtel
%A D. E. Denisov
%A D. A. Korshunov
%T Tail asymptotics for the supercritical Galton--Watson process in the heavy-tailed case
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 288-314
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_282_a19/
%G ru
%F TM_2013_282_a19
V. I. Wachtel; D. E. Denisov; D. A. Korshunov. Tail asymptotics for the supercritical Galton--Watson process in the heavy-tailed case. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 288-314. http://geodesic.mathdoc.fr/item/TM_2013_282_a19/

[1] Asmussen S., Hering H., Branching processes, Birkhäuser, Boston, 1983 | MR | Zbl

[2] Athreya K.B., Ney P.E., Branching processes, Springer, Berlin, 1972 | MR | Zbl

[3] Berestycki N., Gantert N., Mörters P., Sidorova N., Galton–Watson trees with vanishing martingale limit, E-print, 2012, arXiv: 1204.3080 [math.PR]

[4] Biggins J.D., Bingham N.H., “Large deviations in the supercritical branching process”, Adv. Appl. Probab., 25 (1993), 757–772 | DOI | MR | Zbl

[5] Bingham N.H., Doney R.A., “Asymptotic properties of supercritical branching processes. I: The Galton–Watson process”, Adv. Appl. Probab., 6 (1974), 711–731 | DOI | MR | Zbl

[6] Bingham N.H., Doney R.A., “Asymptotic properties of supercritical branching processes. II: Crump–Mode and Jirina processes”, Adv. Appl. Probab., 7 (1975), 66–82 | DOI | MR

[7] Borovkov A.A., Borovkov K.A., Asymptotic analysis of random walks: Heavy-tailed distributions, Cambridge Univ. Press, Cambridge, 2008 | MR | Zbl

[8] De Meyer A., “On a theorem of Bingham and Doney”, J. Appl. Probab., 19 (1982), 217–220 | DOI | MR | Zbl

[9] Denisov D., Dieker A.V., Shneer V., “Large deviations for random walks under subexponentiality: The big-jump domain”, Ann. Probab., 36 (2008), 1946–1991 | DOI | MR | Zbl

[10] Denisov D., Foss S., Korshunov D., “Asymptotics of randomly stopped sums in the presence of heavy tails”, Bernoulli, 16 (2010), 971–994 | DOI | MR | Zbl

[11] Fleischmann K., Wachtel V., “Lower deviation probabilities for supercritical Galton–Watson processes”, Ann. Inst. Henri Poincaré. Probab. Stat., 43 (2007), 233–255 | DOI | MR | Zbl

[12] Fleischmann K., Wachtel V., “On the left tail asymptotics for the limit law of supercritical Galton–Watson processes in the Böttcher case”, Ann. Inst. Henri Poincaré. Probab. Stat., 45 (2009), 201–225 | DOI | MR | Zbl

[13] Foss S., Korshunov D., Zachary S., An introduction to heavy-tailed and subexponential distributions, Springer, New York, 2011 | MR | Zbl

[14] Harris T.E., “Branching processes”, Ann. Math. Stat., 19 (1948), 474–494 | DOI | MR | Zbl

[15] Harris T.E., The theory of branching processes, Springer, Berlin, 1963 | MR | Zbl

[16] Nagaev S.V., “Nekotorye predelnye teoremy dlya bolshikh uklonenii”, Teoriya veroyatn. i ee primen., 10:2 (1965), 231–254 | MR | Zbl

[17] Nagaev S.V., Vakhtel V.I., “Veroyatnostnye neravenstva dlya kriticheskogo protsessa Galtona–Vatsona”, Teoriya veroyatn. i ee primen., 50:2 (2005), 266–291 | DOI | MR