Critical Bellman--Harris branching processes with long-living particles
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 257-287

Voir la notice de l'article provenant de la source Math-Net.Ru

A critical indecomposable two-type Bellman–Harris branching process is considered in which the life-length of the first-type particles has finite variance while the tail of the life-length distribution of the second-type particles is regularly varying at infinity with parameter $\beta\in(0,1]$. It is shown that, contrary to the critical indecomposable Bellman–Harris branching processes with finite variances of the life-lengths of particles of both types, the probability of observing first-type particles at a distant moment $t$ is infinitesimally less than the survival probability of the whole process. In addition, a Yaglom-type limit theorem is proved for the distribution of the number of the first-type particles at moment $t$ given that the population contains particles of the first type at this moment.
@article{TM_2013_282_a18,
     author = {V. A. Vatutin and V. A. Topchii},
     title = {Critical {Bellman--Harris} branching processes with long-living particles},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {257--287},
     publisher = {mathdoc},
     volume = {282},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_282_a18/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - V. A. Topchii
TI  - Critical Bellman--Harris branching processes with long-living particles
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 257
EP  - 287
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_282_a18/
LA  - ru
ID  - TM_2013_282_a18
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A V. A. Topchii
%T Critical Bellman--Harris branching processes with long-living particles
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 257-287
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_282_a18/
%G ru
%F TM_2013_282_a18
V. A. Vatutin; V. A. Topchii. Critical Bellman--Harris branching processes with long-living particles. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 257-287. http://geodesic.mathdoc.fr/item/TM_2013_282_a18/