Asymptotic expansions for the distribution of the sojourn time of a~random walk on a~half-axis
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 154-164

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete asymptotic expansion for $n\to\infty$ is obtained in a local limit theorem for the distribution of the sojourn time of a random walk with zero drift in the set $(b,\infty)$ during $n$ steps. Here $b=b(n)\to\infty$, $b(n)=o(n)$, and Cramér-type conditions are imposed on the distribution of jumps of the walk.
@article{TM_2013_282_a12,
     author = {V. I. Lotov},
     title = {Asymptotic expansions for the distribution of the sojourn time of a~random walk on a~half-axis},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {154--164},
     publisher = {mathdoc},
     volume = {282},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_282_a12/}
}
TY  - JOUR
AU  - V. I. Lotov
TI  - Asymptotic expansions for the distribution of the sojourn time of a~random walk on a~half-axis
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 154
EP  - 164
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_282_a12/
LA  - ru
ID  - TM_2013_282_a12
ER  - 
%0 Journal Article
%A V. I. Lotov
%T Asymptotic expansions for the distribution of the sojourn time of a~random walk on a~half-axis
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 154-164
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_282_a12/
%G ru
%F TM_2013_282_a12
V. I. Lotov. Asymptotic expansions for the distribution of the sojourn time of a~random walk on a~half-axis. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 154-164. http://geodesic.mathdoc.fr/item/TM_2013_282_a12/