Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2013_282_a1, author = {V. I. Afanasyev}, title = {High level subcritical branching processes in a~random environment}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {10--21}, publisher = {mathdoc}, volume = {282}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2013_282_a1/} }
V. I. Afanasyev. High level subcritical branching processes in a~random environment. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 10-21. http://geodesic.mathdoc.fr/item/TM_2013_282_a1/
[1] Afanasyev V.I., Geiger J., Kersting G., Vatutin V.A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl
[2] Afanasev V.I., “O momente dostizheniya fiksirovannogo urovnya kriticheskim vetvyaschimsya protsessom v sluchainoi srede”, Diskret. matematika, 11:4 (1999), 33–47 | DOI | MR | Zbl
[3] Afanasev V. I., “Zakon arksinusa dlya vetvyaschikhsya protsessov v sluchainoi srede i protsessov Galtona–Vatsona”, Teoriya veroyatn. i ee primen., 51:3 (2006), 449–464 | DOI | MR
[4] Afanasev V.I., “Printsip invariantnosti dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede, dostigayuschego vysokogo urovnya”, Teoriya veroyatn. i ee primen., 54:1 (2009), 3–17 | DOI | MR
[5] Afanasyev V.I., “On the maximum of a subcritical branching process in a random environment”, Stoch. Processes Appl., 93:1 (2001), 87–107 | DOI | MR | Zbl