High level subcritical branching processes in a~random environment
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 10-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subcritical branching process in a random environment is considered under the assumption that the moment-generating function of a step of the associated random walk $\Theta(t)$, $t\geq0$, is equal to 1 for some value of the argument $\varkappa>0$. Let $T_x$ be the time when the process first attains the half-axis $(x,+\infty)$ and $T$ be the lifetime of this process. It is shown that the random variable $T_x/\ln x$, considered under the condition $T_x+\infty$, converges in distribution to a degenerate random variable equal to $1/\Theta'(\varkappa)$, and the random variable $T/\ln x$, considered under the same condition, converges in distribution to a degenerate random variable equal to $1/\Theta'(\varkappa)-1/\Theta'(0)$.
@article{TM_2013_282_a1,
     author = {V. I. Afanasyev},
     title = {High level subcritical branching processes in a~random environment},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {10--21},
     publisher = {mathdoc},
     volume = {282},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_282_a1/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - High level subcritical branching processes in a~random environment
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 10
EP  - 21
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_282_a1/
LA  - ru
ID  - TM_2013_282_a1
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T High level subcritical branching processes in a~random environment
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 10-21
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_282_a1/
%G ru
%F TM_2013_282_a1
V. I. Afanasyev. High level subcritical branching processes in a~random environment. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 10-21. http://geodesic.mathdoc.fr/item/TM_2013_282_a1/

[1] Afanasyev V.I., Geiger J., Kersting G., Vatutin V.A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[2] Afanasev V.I., “O momente dostizheniya fiksirovannogo urovnya kriticheskim vetvyaschimsya protsessom v sluchainoi srede”, Diskret. matematika, 11:4 (1999), 33–47 | DOI | MR | Zbl

[3] Afanasev V. I., “Zakon arksinusa dlya vetvyaschikhsya protsessov v sluchainoi srede i protsessov Galtona–Vatsona”, Teoriya veroyatn. i ee primen., 51:3 (2006), 449–464 | DOI | MR

[4] Afanasev V.I., “Printsip invariantnosti dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede, dostigayuschego vysokogo urovnya”, Teoriya veroyatn. i ee primen., 54:1 (2009), 3–17 | DOI | MR

[5] Afanasyev V.I., “On the maximum of a subcritical branching process in a random environment”, Stoch. Processes Appl., 93:1 (2001), 87–107 | DOI | MR | Zbl