Ball on a~viscoelastic plane
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 281 (2013), pp. 98-126

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider dynamical problems arising in connection with the interaction of an absolutely rigid ball and a viscoelastic support plane. The support is a relatively stiff viscoelastic Kelvin–Voigt medium that coincides with the horizontal plane in the undeformed state. We also assume that under the deformation the support induces dry friction forces that are locally governed by the Coulomb law. We study the impact appearing when a ball falls on the plane. Another problem of our interest is the motion of a ball “along the plane”. A detailed analysis of various stages of the motion is presented. We also compare this model with classical models of interaction of solid bodies.
@article{TM_2013_281_a8,
     author = {A. A. Zobova and D. V. Treschev},
     title = {Ball on a~viscoelastic plane},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {98--126},
     publisher = {mathdoc},
     volume = {281},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_281_a8/}
}
TY  - JOUR
AU  - A. A. Zobova
AU  - D. V. Treschev
TI  - Ball on a~viscoelastic plane
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 98
EP  - 126
VL  - 281
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_281_a8/
LA  - ru
ID  - TM_2013_281_a8
ER  - 
%0 Journal Article
%A A. A. Zobova
%A D. V. Treschev
%T Ball on a~viscoelastic plane
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 98-126
%V 281
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_281_a8/
%G ru
%F TM_2013_281_a8
A. A. Zobova; D. V. Treschev. Ball on a~viscoelastic plane. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 281 (2013), pp. 98-126. http://geodesic.mathdoc.fr/item/TM_2013_281_a8/