Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2013_281_a7, author = {V. Yu. Lyapidevskii and V. V. Pukhnachev}, title = {Hyperbolic submodels of an incompressible viscoelastic {Maxwell} medium}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {84--97}, publisher = {mathdoc}, volume = {281}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2013_281_a7/} }
TY - JOUR AU - V. Yu. Lyapidevskii AU - V. V. Pukhnachev TI - Hyperbolic submodels of an incompressible viscoelastic Maxwell medium JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 84 EP - 97 VL - 281 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2013_281_a7/ LA - ru ID - TM_2013_281_a7 ER -
%0 Journal Article %A V. Yu. Lyapidevskii %A V. V. Pukhnachev %T Hyperbolic submodels of an incompressible viscoelastic Maxwell medium %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2013 %P 84-97 %V 281 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2013_281_a7/ %G ru %F TM_2013_281_a7
V. Yu. Lyapidevskii; V. V. Pukhnachev. Hyperbolic submodels of an incompressible viscoelastic Maxwell medium. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 281 (2013), pp. 84-97. http://geodesic.mathdoc.fr/item/TM_2013_281_a7/
[1] Astarita Dzh., Marruchi Dzh., Osnovy gidromekhaniki nenyutonovskikh zhidkostei, Mir, M., 1978
[2] Joseph D.D., Fluid dynamics of viscoelastic fluids, Springer, New York, 1990 | MR
[3] Godunov S.K., Romenskii E.I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauch. kn., Novosibirsk, 1998
[4] Brutyan M.A., Krapivskii P.L., “Gidrodinamika nenyutonovskikh zhidkostei”, Kompleksnye i spetsialnye razdely mekhaniki, T. 4, Itogi nauki i tekhniki, VINITI, M., 1991, 3–98
[5] Gerritsma M.I., Phillips T.N., “On the characteristics and compatibility equations for the UCM model fluid”, Z. angew. Math. Mech., 88:7 (2008), 523–539 | DOI | MR | Zbl
[6] Guillopé C., Saut J.-C., “Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type”, Math. Model. Numer. Anal., 24:3 (1990), 369–401 | MR | Zbl
[7] Pukhnachev V.V., “Matematicheskaya model neszhimaemoi vyazkouprugoi sredy Maksvella”, Prikl. mekh. i tekhn. fiz., 51:4 (2010), 116–126 | MR | Zbl
[8] Liapidevskii V.Yu., Pukhnachev V.V., Tani A., “Nonlinear waves in incompressible viscoelastic Maxwell medium”, Wave Motion, 48:8 (2011), 727–737 | DOI | MR
[9] Rutkevich I.M., “Nekotorye obschie svoistva uravnenii dinamiki vyazko-uprugoi neszhimaemoi zhidkosti”, PMM, 33 (1969), 42–51 | MR | Zbl
[10] Rutkevich I.M., “O rasprostranenii malykh vozmuschenii v vyazko-uprugoi zhidkosti”, PMM, 34 (1970), 41–56 | Zbl
[11] Joseph D.D., Saut J.C., “Change of type and loss of evolution in the flow of viscoelastic fluids”, J. Non-Newtonian Fluid Mech., 20 (1986), 117–141 | DOI | Zbl
[12] Dupret F., Marchal J.M., “Loss of evolution in the flow of viscoelastic fluids”, J. Non-Newtonian Fluid Mech., 20 (1986), 143–171 | DOI | Zbl
[13] Brutyan M.A., Kulikovskii A.G., “Neustoichivost i needinstvennost kvazistatsionarnykh techenii vyazkouprugoi zhidkosti”, Izv. RAN. Mekhanika zhidkosti i gaza, 1996, no. 6, 29–39 | MR | Zbl
[14] Andrienko Yu.A., Brutyan M.A., Obraztsov I.F., Yanovskii Yu.G., “Spurt-effekt dlya vyazkouprugikh zhidkostei v 4-konstantnoi modeli Oldroida”, DAN, 352:3 (1997), 327–330 | MR | Zbl
[15] Ovsyannikov L.V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[16] Mescheryakova E.Yu., Pukhnachev V.V., “Gruppovoi analiz uravnenii neszhimaemoi vyazkouprugoi sredy Maksvella”, Sovremennye problemy mekhaniki sploshnoi sredy, Tr. XIV Mezhdunar. konf., Rostov-na-Donu, Azov, 2010, T. 1, Izd-vo YuFU, Rostov-na-Donu, 2010, 230–234
[17] Pukhnachev V.V., “Tochnye resheniya uravnenii dvizheniya neszhimaemoi vyazkouprugoi sredy Maksvella”, Prikl. mekh. i tekhn. fiz., 50:2 (2009), 16–23 | MR
[18] Brutyan M.A., Krapivsky P.L., “Collapse of spherical bubbles in viscoelastic liquids”, Q. J. Mech. Appl. Math., 44:4 (1991), 549–557 | DOI | MR | Zbl
[19] Osipov S.V., Pukhnachev V.V., “Zadacha o zapolnenii polosti v neszhimaemoi vyazkouprugoi srede Maksvella”, Uspekhi mekhaniki sploshnykh sred, Dalnauka, Vladivostok, 2009, 583–591
[20] Zielinska B.J.A., Demay Y., “Couette–Taylor instability in viscoelastic fluids”, Phys. Rev. A., 38:2 (1998), 897–903 | DOI
[21] Kadchenko S.I., “Reshenie problemy ustoichivosti ploskogo techeniya Kuetta”, Vestn. Magnitogorsk. gos. un-ta, 4 (2003), 80–99 | Zbl
[22] Gorodtsov V.A., Leonov A.I., “O lineinoi neustoichivosti ploskoparallelnogo techeniya Kuetta uprugo-vyazkoi zhidkosti”, PMM, 31 (1967), 289–299 | Zbl
[23] Renardy M., “A rigorous stability proof for plane Couette flow of an upper convected Maxwell fluid at zero Reynolds number”, Eur. J. Mech. B: Fluids, 11 (1992), 511–516 | MR | Zbl
[24] Kupferman R., “On the linear stability of plane Couette flow for an Oldroyd-B fluid and its numerical approximation”, J. Non-Newtonian Fluid Mech., 127 (2005), 169–190 | DOI | Zbl
[25] Catheline S., Gennisson J.-L., Tanter M., Fink M., “Observation of shock transverse waves in elastic media”, Phys. Rev. Lett., 91:16 (2003), 164301 | DOI
[26] Lyapidevskii V.Yu., Teshukov V., Matematicheskie modeli rasprostraneniya dlinnykh voln v neodnorodnoi zhidkosti, Izd-vo SO RAN, Novosibirsk, 2000
[27] Fyrillas M.M., Georgiou G.C., “Linear stability diagrams for the shear flow of an Oldroyd-B fluid with slip along the fixed wall”, Rheol. acta., 37:1 (1998), 61–67 | DOI