Kinetic equation method for problems of viscous gas dynamics with rapidly oscillating density distributions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 281 (2013), pp. 68-83

Voir la notice de l'article provenant de la source Math-Net.Ru

Equations describing the dynamics of a viscous gas are considered in a bounded space–time domain. It is assumed that the boundary values of density distributions oscillate rapidly. Limit regimes that arise when the oscillation frequencies tend to infinity are studied. As a result, a limit (averaged) model is constructed that contains full information on the limit oscillation regimes and includes an additional kinetic equation that has the form of the Boltzmann equation in the kinetic theory of gases.
@article{TM_2013_281_a6,
     author = {P. I. Plotnikov and S. A. Sazhenkov},
     title = {Kinetic equation method for problems of viscous gas dynamics with rapidly oscillating density distributions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {68--83},
     publisher = {mathdoc},
     volume = {281},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_281_a6/}
}
TY  - JOUR
AU  - P. I. Plotnikov
AU  - S. A. Sazhenkov
TI  - Kinetic equation method for problems of viscous gas dynamics with rapidly oscillating density distributions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 68
EP  - 83
VL  - 281
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_281_a6/
LA  - ru
ID  - TM_2013_281_a6
ER  - 
%0 Journal Article
%A P. I. Plotnikov
%A S. A. Sazhenkov
%T Kinetic equation method for problems of viscous gas dynamics with rapidly oscillating density distributions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 68-83
%V 281
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_281_a6/
%G ru
%F TM_2013_281_a6
P. I. Plotnikov; S. A. Sazhenkov. Kinetic equation method for problems of viscous gas dynamics with rapidly oscillating density distributions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 281 (2013), pp. 68-83. http://geodesic.mathdoc.fr/item/TM_2013_281_a6/