Stability of a~flame front in a~divergent flow
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 281 (2013), pp. 55-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the evolution of perturbations on the surface of a stationary plane flame front in a divergent flow of a combustible mixture incident on a plane wall perpendicular to the flow. The flow and its perturbations are assumed to be two-dimensional; i.e., the velocity has two Cartesian components. It is also assumed that the front velocity relative to the gas is small; therefore, the fluid can be considered incompressible on both sides of the front; in addition, it is assumed that in the presence of perturbations the front velocity relative to the gas ahead of it is a linear function of the front curvature. It is shown that due to the dependence (in the unperturbed flow) of the tangential component of the gas velocity on the combustion front on the coordinate along the front, the amplitude of the flame front perturbation does not increase infinitely with time, but the initial growth of perturbations stops and then begins to decline. We evaluate the coefficient of the maximum growth of perturbations, which may be large, depending on the problem parameters. It is taken into account that the characteristic spatial scale of the initial perturbations may be much greater than the wavelengths of the most rapidly growing perturbations, whose length is comparable with the flame front thickness. The maximum growth of perturbations is estimated as a function of the characteristic spatial scale of the initial perturbations.
@article{TM_2013_281_a5,
     author = {A. G. Kulikovskii and N. T. Pashchenko},
     title = {Stability of a~flame front in a~divergent flow},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {55--67},
     publisher = {mathdoc},
     volume = {281},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_281_a5/}
}
TY  - JOUR
AU  - A. G. Kulikovskii
AU  - N. T. Pashchenko
TI  - Stability of a~flame front in a~divergent flow
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 55
EP  - 67
VL  - 281
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_281_a5/
LA  - ru
ID  - TM_2013_281_a5
ER  - 
%0 Journal Article
%A A. G. Kulikovskii
%A N. T. Pashchenko
%T Stability of a~flame front in a~divergent flow
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 55-67
%V 281
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_281_a5/
%G ru
%F TM_2013_281_a5
A. G. Kulikovskii; N. T. Pashchenko. Stability of a~flame front in a~divergent flow. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 281 (2013), pp. 55-67. http://geodesic.mathdoc.fr/item/TM_2013_281_a5/

[1] Landau L.D., Lifshits E.M., Teoreticheskaya fizika. T. 6: Gidrodinamika, Nauka, M., 1986 | MR

[2] Markstein G.H., “Experimental and theoretical studies of flame front stability”, J. Astronaut. Sci., 18:3 (1951), 199–209 | DOI

[3] Kulikovskii A.G., Shikina I.S., “Ob usloviyakh neustoichivosti fronta plameni v slaboneodnorodnom potoke”, Izv. RAN. Mekhanika zhidkosti i gaza, 2000, no. 5, 12–19 | MR

[4] Kotenkov S.G., Shikina I.S., “Absolyutnaya i konvektivnaya neustoichivost kosogo fronta plameni v potoke goryuchei smesi gazov”, Fizika goreniya i vzryva, 37:4 (2001), 9–14

[5] Sivashinsky G.I., “Nonlinear analysis of hydrodynamic instability in laminar flames. I: Derivation of basic equations”, Acta astronaut., 4 (1977), 1177–1206 | DOI | MR | Zbl

[6] Kuznetsov E.A., Minaev S.S., “Velocity of coherent structure propagation on the flame surface”, Advanced computation and analysis of combustion, ENAS Publ., Moscow, 1997, 397–403

[7] Zeldovich Ya.B., Barenblatt G.I., Librovich V.B., Makhviladze G.M., Matematicheskaya teoriya goreniya i vzryva, Nauka, M., 1980 | MR

[8] Liberman M.A., Bychkov V.V., Golberg S.M., “Ob ustoichivosti plameni v pole tyazhesti”, ZhETF, 104:8 (1993), 2685–2703

[9] Kulikovskii A.G., Lozovskii A.V, Paschenko N.T., “O razvitii vozmuschenii na slaboneodnorodnom fone”, PMM, 71:5 (2007), 761–774 | MR