Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2013_280_a7, author = {G. G. Gevorgyan and A. S. Martirosyan}, title = {Majorant and {Paley} function for series in general {Franklin} systems}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {138--149}, publisher = {mathdoc}, volume = {280}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2013_280_a7/} }
TY - JOUR AU - G. G. Gevorgyan AU - A. S. Martirosyan TI - Majorant and Paley function for series in general Franklin systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 138 EP - 149 VL - 280 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2013_280_a7/ LA - ru ID - TM_2013_280_a7 ER -
G. G. Gevorgyan; A. S. Martirosyan. Majorant and Paley function for series in general Franklin systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 138-149. http://geodesic.mathdoc.fr/item/TM_2013_280_a7/
[1] Poghosyan M.P., “Uniqueness of Series by General Franklin Systems”, J. Contemp. Math. Anal., 35:4 (2000), 75–81 | MR | Zbl
[2] Ciesielski Z., Kamont A., “Projections onto piecewise linear functions”, Funct. approx. Comment. math., 25 (1997), 129–143 | MR | Zbl
[3] Gevorkyan G., Kamont A., On general Franklin systems, Diss. math., 374, Inst. Mat., Pol. Acad. Sci., Warszawa, 1998 | MR
[4] Gevorkyan G.G., Sahakian A.A., “Unconditional Basis Property of General Franklin Systems”, J. Contemp. Math. Anal., 35:4 (2000), 2–22 | MR | Zbl
[5] Gevorkyan G., Kamont A., “Unconditionality of general Franklin systems in $L^p[0,1]$, $1
\infty $”, Stud. math., 164:2 (2004), 161–204 | DOI | MR | Zbl[6] Bochkarev S.V., “Suschestvovanie bazisa v prostranstve funktsii, analiticheskikh v kruge, i nekotorye svoistva sistemy Franklina”, Mat. sb., 95:1 (1974), 3–18
[7] Poghosyan M.P., “Almost everywhere convergence of series by generalized Franklin systems”, J. Contemp. Math. Anal., 35:2 (2000), 61–73 | MR | Zbl
[8] Gevorkyan G.G., “Mazhoranta i edinstvennost ryadov po sisteme Franklina”, Mat. zametki, 59:4 (1996), 521–545 | DOI | MR | Zbl
[9] Balashov L.A., Obobschennoe integrirovanie ryadov po sisteme Khaara, Vsesoyuznaya shkola po teorii funktsii: Tez. dokl., Erevan, 1987, 3