Majorant and Paley function for series in general Franklin systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 138-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_2013_280_a7,
     author = {G. G. Gevorgyan and A. S. Martirosyan},
     title = {Majorant and {Paley} function for series in general {Franklin} systems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {138--149},
     publisher = {mathdoc},
     volume = {280},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_280_a7/}
}
TY  - JOUR
AU  - G. G. Gevorgyan
AU  - A. S. Martirosyan
TI  - Majorant and Paley function for series in general Franklin systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 138
EP  - 149
VL  - 280
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_280_a7/
LA  - ru
ID  - TM_2013_280_a7
ER  - 
%0 Journal Article
%A G. G. Gevorgyan
%A A. S. Martirosyan
%T Majorant and Paley function for series in general Franklin systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 138-149
%V 280
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_280_a7/
%G ru
%F TM_2013_280_a7
G. G. Gevorgyan; A. S. Martirosyan. Majorant and Paley function for series in general Franklin systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 138-149. http://geodesic.mathdoc.fr/item/TM_2013_280_a7/

[1] Poghosyan M.P., “Uniqueness of Series by General Franklin Systems”, J. Contemp. Math. Anal., 35:4 (2000), 75–81 | MR | Zbl

[2] Ciesielski Z., Kamont A., “Projections onto piecewise linear functions”, Funct. approx. Comment. math., 25 (1997), 129–143 | MR | Zbl

[3] Gevorkyan G., Kamont A., On general Franklin systems, Diss. math., 374, Inst. Mat., Pol. Acad. Sci., Warszawa, 1998 | MR

[4] Gevorkyan G.G., Sahakian A.A., “Unconditional Basis Property of General Franklin Systems”, J. Contemp. Math. Anal., 35:4 (2000), 2–22 | MR | Zbl

[5] Gevorkyan G., Kamont A., “Unconditionality of general Franklin systems in $L^p[0,1]$, $1

\infty $”, Stud. math., 164:2 (2004), 161–204 | DOI | MR | Zbl

[6] Bochkarev S.V., “Suschestvovanie bazisa v prostranstve funktsii, analiticheskikh v kruge, i nekotorye svoistva sistemy Franklina”, Mat. sb., 95:1 (1974), 3–18

[7] Poghosyan M.P., “Almost everywhere convergence of series by generalized Franklin systems”, J. Contemp. Math. Anal., 35:2 (2000), 61–73 | MR | Zbl

[8] Gevorkyan G.G., “Mazhoranta i edinstvennost ryadov po sisteme Franklina”, Mat. zametki, 59:4 (1996), 521–545 | DOI | MR | Zbl

[9] Balashov L.A., Obobschennoe integrirovanie ryadov po sisteme Khaara, Vsesoyuznaya shkola po teorii funktsii: Tez. dokl., Erevan, 1987, 3