Fourier transforms in generalized Lipschitz classes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 126-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_2013_280_a6,
     author = {S. S. Volosivets and B. I. Golubov},
     title = {Fourier transforms in generalized {Lipschitz} classes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {126--137},
     publisher = {mathdoc},
     volume = {280},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_280_a6/}
}
TY  - JOUR
AU  - S. S. Volosivets
AU  - B. I. Golubov
TI  - Fourier transforms in generalized Lipschitz classes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 126
EP  - 137
VL  - 280
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_280_a6/
LA  - ru
ID  - TM_2013_280_a6
ER  - 
%0 Journal Article
%A S. S. Volosivets
%A B. I. Golubov
%T Fourier transforms in generalized Lipschitz classes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 126-137
%V 280
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_280_a6/
%G ru
%F TM_2013_280_a6
S. S. Volosivets; B. I. Golubov. Fourier transforms in generalized Lipschitz classes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 126-137. http://geodesic.mathdoc.fr/item/TM_2013_280_a6/

[1] Titchmarsh E., Vvedenie v teoriyu integralov Fure, Gostekhizdat, M., 1948

[2] Bari N.K., Stechkin S.B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. mat. o-va, 5 (1956), 483–522 | MR | Zbl

[3] Sampson G., Tuy H., “Fourier transforms and their Lipschitz classes”, Pac. J. Math., 75:2 (1978), 519–537 | DOI | MR | Zbl

[4] Móricz F., “Best possible sufficient conditions for the Fourier transform to satisfy the Lipschitz or Zygmund condition”, Stud. math., 199:2 (2010), 199–205 | DOI | MR | Zbl

[5] Móricz F., “Absolutely convergent Fourier integrals and classical function spaces”, Arch. Math., 91:1 (2008), 49–62 | DOI | MR | Zbl

[6] Volosivets S.S., “Fourier transforms and generalized Lipschitz classes in uniform metric”, J. Math. Anal. Appl., 383:2 (2011), 344–352 | DOI | MR | Zbl

[7] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, 2-e izd., Nauka, M., 1977 | MR

[8] Tikhonov S., “Smoothness conditions and Fourier series”, Math. Inequal. Appl., 10:2 (2007), 229–242 | MR | Zbl

[9] Timan A.F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960