Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2013_280_a5, author = {A. A. Vasil'eva}, title = {Widths of weighted {Sobolev} classes on {a~John} domain}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {97--125}, publisher = {mathdoc}, volume = {280}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2013_280_a5/} }
A. A. Vasil'eva. Widths of weighted Sobolev classes on a~John domain. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 97-125. http://geodesic.mathdoc.fr/item/TM_2013_280_a5/
[1] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, Fizmatlit, M., 1996 | MR
[2] Reshetnyak Yu.G., “Integralnye predstavleniya differentsiruemykh funktsii v oblastyakh s negladkoi granitsei”, Sib. mat. zhurn., 21:6 (1980), 108–116 | MR | Zbl
[3] Reshetnyak Yu.G., “Zamechanie ob integralnykh predstavleniyakh differentsiruemykh funktsii mnogikh peremennykh”, Sib. mat. zhurn., 25:5 (1984), 198–200 | MR | Zbl
[4] Adams D.R., “Traces of potentials. II”, Indiana Univ. Math. J., 22 (1973), 907–918 | DOI | MR | Zbl
[5] Adams D.R., “A trace inequality for generalized potentials”, Stud. Math., 48 (1973), 99–105 | MR | Zbl
[6] Kufner A., Weighted Sobolev spaces, Teubner-Texte Math., 31, Teubner, Leipzig, 1980 | MR | Zbl
[7] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR
[8] Turesson B.O., Nonlinear potential theory and weighted Sobolev spaces, Lect. Notes Math., 1736, Springer, Berlin, 2000 | DOI | MR | Zbl
[9] Edmunds D.E., Triebel H., Function spaces, entropy numbers, differential operators, Cambridge Tracts Math., 120, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl
[10] Triebel H., Theory of function spaces. III, Birkhäuser, Basel, 2006 | MR | Zbl
[11] Edmunds D.E., Evans W.D., Hardy operators, function spaces and embeddings, Springer, Berlin, 2004 | MR | Zbl
[12] Kudryavtsev L.D., Nikolskii S.M., “Prostranstva differentsiruemykh funktsii mnogikh peremennykh i teoremy vlozheniya”, Analiz–3, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 26, VINITI, M., 1988, 5–157 | MR
[13] Kudryavtsev L.D., Pryamye i obratnye teoremy vlozheniya. Prilozheniya k resheniyu variatsionnym metodom ellipticheskikh uravnenii, Tr. MIAN, 55, Izd-vo AN SSSR, M., 1959 | MR | Zbl
[14] Lizorkin P.I., Otelbaev M., “Teoremy vlozheniya i kompaktnosti dlya prostranstv sobolevskogo tipa s vesami. I, II”, Mat. sb., 108:3 (1979), 358–377 ; 112:1 (1980), 56–85 | MR | Zbl | MR | Zbl
[15] Gurka P., Opic B., “Continuous and compact imbeddings of weighted Sobolev spaces. I, II, III”, Czech. Math. J., 38:4 (1988), 730–744 ; 39:1 (1989), 78–94 ; 41:2 (1991), 317–341 | MR | Zbl | MR | Zbl | MR | Zbl
[16] Besov O.V., “O kompaktnosti vlozhenii vesovykh prostranstv Soboleva na oblasti s neregulyarnoi granitsei”, Tr. MIAN, 232 (2001), 72–93 | MR | Zbl
[17] Besov O.V., “Teorema vlozheniya Soboleva dlya oblasti s neregulyarnoi granitsei”, Mat. sb., 192:3 (2001), 3–26 | DOI | MR | Zbl
[18] Besov O.V., “O kompaktnosti vlozhenii vesovykh prostranstv Soboleva na oblasti s neregulyarnoi granitsei”, DAN., 376:6 (2001), 727–732 | MR | Zbl
[19] Besov O.V., “Integralnye otsenki differentsiruemykh funktsii na neregulyarnykh oblastyakh”, Mat. sb., 201:12 (2010), 69–82 | DOI | MR
[20] Antoci F., “Some necessary and some sufficient conditions for the compactness of the embedding of weighted Sobolev spaces”, Ric. Mat., 52:1 (2003), 55–71 | MR | Zbl
[21] Gol'dshtein V., Ukhlov A., “Weighted Sobolev spaces and embedding theorems”, Trans. Amer. Math. Soc., 361:7 (2009), 3829–3850 | DOI | MR | Zbl
[22] Heinrich S., “On the relation between linear $n$-widths and approximation numbers”, J. Approx. Theory., 58:3 (1989), 315–333 | DOI | MR | Zbl
[23] Tikhomirov V.M., “Poperechniki mnozhestv v funktsionalnykh prostranstvakh i teoriya nailuchshikh priblizhenii”, UMN, 15:3 (1960), 81–120 | MR | Zbl
[24] Babadzhanov S.B., Tikhomirov V.M., “O poperechnikakh odnogo klassa v prostranstve $L^p$”, Izv. AN UzSSR. Ser. fiz.-mat. nauk, 11:2 (1967), 24–30 | MR | Zbl
[25] Buslaev A.P., Tikhomirov V.M., “Spektry nelineinykh differentsialnykh uravnenii i poperechniki sobolevskikh klassov”, Mat. sb., 181:12 (1990), 1587–1606 | MR | Zbl
[26] Ismagilov R.S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, UMN, 29:3 (1974), 161–178 | MR | Zbl
[27] Kashin B.S., “Poperechniki nekotorykh konechnomernykh mnozhestv i klassov gladkikh funktsii”, Izv. AN SSSR. Ser. mat., 41:2 (1977), 334–351 | MR | Zbl
[28] Maiorov V.E., “Diskretizatsiya zadachi o poperechnikakh”, UMN, 30:6 (1975), 179–180 | MR | Zbl
[29] Makovoz Yu.I., “Ob odnom prieme otsenki snizu poperechnikov mnozhestv v banakhovykh prostranstvakh”, Mat. sb., 87:1 (1972), 136–142 | MR | Zbl
[30] Temlyakov V.N., “O priblizhenii periodicheskikh funktsii neskolkikh peremennykh s ogranichennoi smeshannoi raznostyu”, DAN SSSR, 253:3 (1980), 544–548 | MR | Zbl
[31] Temlyakov V.N., “Poperechniki nekotorykh klassov funktsii neskolkikh peremennykh”, DAN SSSR, 267:2 (1982), 314–317 | MR
[32] Temlyakov V.N., “Priblizhenie funktsii s ogranichennoi smeshannoi raznostyu trigonometricheskimi polinomami i poperechniki nekotorykh klassov funktsii”, Izv. AN SSSR. Ser. mat., 46:1 (1982), 171–186 | MR | Zbl
[33] Galeev E.M., “Priblizhenie nekotorykh klassov periodicheskikh funktsii mnogikh peremennykh summami Fure v metrike $\widetilde {\mathcal L}_p$”, UMN., 32:4 (1977), 251–252 | MR | Zbl
[34] Galeev E.M., “Priblizhenie summami Fure klassov funktsii s neskolkimi ogranichennymi proizvodnymi”, Mat. zametki, 23:2 (1978), 197–212 | MR | Zbl
[35] Kashin B.S., “O poperechnikakh klassov Soboleva maloi gladkosti”, Vestn. Mosk. un-ta. Matematika, mekhanika, 1981, no. 5, 50–54 | MR | Zbl
[36] Kulanin E.D., Otsenki poperechnikov funktsionalnykh klassov maloi gladkosti, Dis. ... kand. fiz.-mat. nauk, MGU, M., 1986
[37] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR
[38] Tikhomirov V.M., “Teoriya priblizhenii”, Analiz–2, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 14, VINITI, M., 1987, 103–260 | MR
[39] Pinkus A., $n$-Widths in approximation theory, Springer, Berlin, 1985 | MR
[40] Pietsch A., “$s$-Numbers of operators in Banach spaces”, Stud. math., 51 (1974), 201–223 | MR | Zbl
[41] Stesin M.I., “Aleksandrovskie poperechniki konechnomernykh mnozhestv i klassov gladkikh funktsii”, DAN SSSR, 220:6 (1975), 1278–1281 | MR | Zbl
[42] Gluskin E.D., “Normy sluchainykh matrits i poperechniki konechnomernykh mnozhestv”, Mat. sb., 120:2 (1983), 180–189 | MR | Zbl
[43] Garnaev A.Yu., Gluskin E.D., “O poperechnikakh evklidova shara”, DAN SSSR, 277:5 (1984), 1048–1052 | MR | Zbl
[44] Birman M.Sh., Solomyak M.Z., “Kusochno-polinomialnye priblizheniya funktsii klassov $W^\alpha _p$”, Mat. sb., 73:3 (1967), 331–355 | MR | Zbl
[45] Vybíral J., “Widths of embeddings in function spaces”, J. Complexity, 24:4 (2008), 545–570 | DOI | MR | Zbl
[46] Edmunds D.E., Evans W.D., “Spectral problems on arbitrary open subsets of $\mathbb R^n$ involving the distance to the boundary”, J. Comput. Appl. Math., 194:1 (2006), 36–53 | DOI | MR | Zbl
[47] Evans W.D., Harris D.J., “Fractals, trees and the Neumann Laplacian”, Math. Ann., 296:3 (1993), 493–527 | DOI | MR | Zbl
[48] Evans W.D., Harris D.J., Lang J., “The approximation numbers of Hardy-type operators on trees”, Proc. London Math. Soc. Ser. 3, 83:2 (2001), 390–418 | DOI | MR | Zbl
[49] Solomyak M., “On approximation of functions from Sobolev spaces on metric graphs”, J. Approx. Theory, 121:2 (2003), 199–219 | DOI | MR | Zbl
[50] Besov O.V., “O kolmogorovskikh poperechnikakh klassov Soboleva na neregulyarnoi oblasti”, Tr. MIAN, 280 (2013), 41–52 | Zbl
[51] Leoni G., A first course in Sobolev spaces, Grad. Stud. Math., 105, Amer. Math. Soc., Providence, RI, 2009 | MR | Zbl
[52] Vasileva A.A., “Kolmogorovskie poperechniki vesovykh klassov Soboleva na kube”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:4 (2010), 100–116
[53] Cohen A., DeVore R., Petrushev P., Xu H., “Nonlinear approximation and the space $\mathrm {BV}(\mathbb R^2)$”, Amer. J. Math., 121:3 (1999), 587–628 | DOI | MR | Zbl
[54] Mazya V.G., Prostranstva S.L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl
[55] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950
[56] Vasil'eva A.A., “Kolmogorov widths of weighted Sobolev classes on a domain for a special class of weights. II”, Russ. J. Math. Phys., 18:4 (2011), 465–504 | DOI | MR