On congruences with products of variables from short intervals and applications
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 67-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain upper bounds on the number of solutions to congruences of the type $(x_1+s)\dots(x_\nu+s)\equiv(y_1+s)\dots(y_\nu +s)\not\equiv0\pmod p$ modulo a prime $p$ with variables from some short intervals. We give some applications of our results and in particular improve several recent estimates of J. Cilleruelo and M. Z. Garaev on exponential congruences and on cardinalities of products of short intervals, some double character sum estimates of J. Friedlander and H. Iwaniec and some results of M.-C. Chang and A. A. Karatsuba on character sums twisted with the divisor function.
@article{TM_2013_280_a4,
     author = {Jean Bourgain and Moubariz Z. Garaev and Sergei V. Konyagin and Igor E. Shparlinski},
     title = {On congruences with products of variables from short intervals and applications},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {67--96},
     publisher = {mathdoc},
     volume = {280},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_280_a4/}
}
TY  - JOUR
AU  - Jean Bourgain
AU  - Moubariz Z. Garaev
AU  - Sergei V. Konyagin
AU  - Igor E. Shparlinski
TI  - On congruences with products of variables from short intervals and applications
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 67
EP  - 96
VL  - 280
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_280_a4/
LA  - en
ID  - TM_2013_280_a4
ER  - 
%0 Journal Article
%A Jean Bourgain
%A Moubariz Z. Garaev
%A Sergei V. Konyagin
%A Igor E. Shparlinski
%T On congruences with products of variables from short intervals and applications
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 67-96
%V 280
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_280_a4/
%G en
%F TM_2013_280_a4
Jean Bourgain; Moubariz Z. Garaev; Sergei V. Konyagin; Igor E. Shparlinski. On congruences with products of variables from short intervals and applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 67-96. http://geodesic.mathdoc.fr/item/TM_2013_280_a4/

[1] Ayyad A., Cochrane T., Zheng Z., “The congruence $x_1x_2 \equiv x_3x_4 \pmod p$, the equation $x_1x_2 = x_3x_4$, and mean values of character sums”, J. Number Theory, 59 (1996), 398–413 | DOI | MR | Zbl

[2] Betke U., Henk M., Wills J.M., “Successive-minima-type inequalities”, Discrete Comput. Geom., 9 (1993), 165–175 | DOI | MR | Zbl

[3] Bourgain J., “More on the sum-product phenomenon in prime fields and its applications”, Int. J. Number Theory, 1 (2005), 1–32 | DOI | MR | Zbl

[4] Bourgain J., Garaev M.Z., Konyagin S.V., Shparlinski I.E., “On the hidden shifted power problem”, SIAM J. Comput., 41:6 (2012), 1524–1557 | DOI | MR | Zbl

[5] Chan T.H., Shparlinski I.E., “On the concentration of points on modular hyperbolas and exponential curves”, Acta arith., 142 (2010), 59–66 | DOI | MR | Zbl

[6] Chang M.-C., “Factorization in generalized arithmetic progressions and applications to the Erdős–Szemerédi sum-product problems”, Geom. Funct. Anal., 13 (2003), 720–736 | DOI | MR | Zbl

[7] Chang M.-C., “Character sums in finite fields”, Finite fields: Theory and applications, Amer. Math. Soc., Providence, RI, 2010, 83–98 | DOI | MR | Zbl

[8] Cilleruelo J., Garaev M.Z., “Concentration of points on two and three dimensional modular hyperbolas and applications”, Geom. Funct. Anal., 21 (2011), 892–904 | DOI | MR | Zbl

[9] Cochrane T., Shi S., “The congruence $x_1x_2 \equiv x_3x_4 \pmod m$ and mean values of character sums”, J. Number Theory, 130 (2010), 767–785 | DOI | MR | Zbl

[10] Cochrane T., Zheng Z., “High order moments of character sums”, Proc. Amer. Math. Soc., 126 (1998), 951–956 | DOI | MR | Zbl

[11] Friedlander J.B., Iwaniec H., “The divisor problem for arithmetic progressions”, Acta arith., 45 (1985), 273–277 | MR | Zbl

[12] Friedlander J.B., Iwaniec H., “Estimates for character sums”, Proc. Amer. Math. Soc., 119 (1993), 365–372 | DOI | MR | Zbl

[13] Garaev M.Z., “On multiplicative congruences”, Math. Z., 272 (2012), 473–482 | DOI | MR | Zbl

[14] Garaev M.Z., Garcia V.C., “The equation $x_1x_2=x_3x_4+\lambda $ in fields of prime order and applications”, J. Number Theory, 128 (2008), 2520–2537 | DOI | MR | Zbl

[15] Karatsuba A.A., “On a certain arithmetic sum”, Sov. Math. Dokl., 12 (1971), 1172–1174 | MR | Zbl

[16] Karatsuba A.A., “Weighted character sums”, Izv. Math., 64 (2000), 249–263 | DOI | DOI | MR | Zbl

[17] Karatsuba A.A., “Arithmetic problems in the theory of Dirichlet characters”, Russ. Math. Surv., 63 (2008), 641–690 | DOI | DOI | MR | Zbl

[18] Konyagin S.V., “Estimates of character sums in finite fields”, Math. Notes, 88 (2010), 503–515 | DOI | DOI | MR | Zbl

[19] Le Boudec P., “Power-free values of the polynomial $t_1\dots t_r-1$”, Bull. Aust. Math. Soc., 85:1 (2012), 154–163 | DOI | MR | Zbl

[20] Mignotte M., Mathematics for computer algebra, Springer, New York, 1992 | MR | Zbl

[21] Narkiewicz W., Elementary and analytic theory of algebraic numbers, Pol. Sci. Publ., Warszawa, 1990 | MR

[22] Shparlinski I.E., “On the distribution of points on multidimensional modular hyperbolas”, Proc. Jpn. Acad. A., 83:2 (2007), 5–9 | DOI | MR | Zbl

[23] Shparlinski I.E., “On a generalisation of a Lehmer problem”, Math. Z., 263 (2009), 619–631 | DOI | MR | Zbl

[24] Tao T., V.H. Vu, Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl