Kolmogorov widths of Sobolev classes on an irregular domain
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 41-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_2013_280_a2,
     author = {O. V. Besov},
     title = {Kolmogorov widths of {Sobolev} classes on an irregular domain},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {41--52},
     publisher = {mathdoc},
     volume = {280},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_280_a2/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Kolmogorov widths of Sobolev classes on an irregular domain
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 41
EP  - 52
VL  - 280
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_280_a2/
LA  - ru
ID  - TM_2013_280_a2
ER  - 
%0 Journal Article
%A O. V. Besov
%T Kolmogorov widths of Sobolev classes on an irregular domain
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 41-52
%V 280
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_280_a2/
%G ru
%F TM_2013_280_a2
O. V. Besov. Kolmogorov widths of Sobolev classes on an irregular domain. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 41-52. http://geodesic.mathdoc.fr/item/TM_2013_280_a2/

[1] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR

[2] Pinkus A., $n$-Widths in approximation theory, Springer, Berlin, 1985 | MR

[3] Tikhomirov V.M., “Teoriya priblizhenii”, Analiz–2, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 14, VINITI, M., 1987, 103–260 | MR

[4] Tikhomirov V.M., “Poperechniki mnozhestv v funktsionalnykh prostranstvakh i teoriya nailuchshikh priblizhenii”, UMN, 15:3 (1960), 81–120 | MR | Zbl

[5] Ismagilov R.S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, UMN, 29:3 (1974), 161–178 | MR | Zbl

[6] Kashin B.S., “Poperechniki nekotorykh konechnomernykh mnozhestv i klassov gladkikh funktsii”, Izv. AN SSSR. Ser. mat., 41:2 (1977), 334–351 | MR | Zbl

[7] Birman M.Sh., Solomyak M.Z., “Kusochno-polinomialnye priblizheniya funktsii klassov $W^\alpha _p$”, Mat. sb., 73:3 (1967), 331–355 | MR | Zbl

[8] Vasileva A.A., “Poperechniki vesovykh klassov Soboleva na oblasti, udovletvoryayuschei usloviyu Dzhona”, Tr. MIAN, 280 (2013), 97–125 | Zbl

[9] Besov O.V., “Integralnye otsenki differentsiruemykh funktsii na neregulyarnykh oblastyakh”, Mat. sb., 201:12 (2010), 69–82 | DOI | MR

[10] Trushin B.V., “Nepreryvnost vlozhenii vesovykh prostranstv Soboleva v prostranstva Lebega na anizotropno neregulyarnykh oblastyakh”, Tr. MIAN, 269 (2010), 271–289 | MR | Zbl

[11] Besov O.V., “Sobolev's embedding theorem for anisotropically irregular domains”, Eurasian Math. J., 2:1 (2011), 32–51 | MR | Zbl

[12] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[13] Maiorov V.E., “Diskretizatsiya zadachi o poperechnikakh”, UMN, 30:6 (1975), 179–180 | MR | Zbl

[14] Vasileva A.A., “Kolmogorovskie poperechniki vesovykh klassov Soboleva na kube”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:4 (2010), 100–116

[15] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, Fizmatlit, M., 1996 | MR