Estimate for the integral of the absolute value of a~sine series with monotone coefficients
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 270-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_2013_280_a18,
     author = {A. Yu. Popov and S. A. Telyakovskii},
     title = {Estimate for the integral of the absolute value of a~sine series with monotone coefficients},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {270--274},
     publisher = {mathdoc},
     volume = {280},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_280_a18/}
}
TY  - JOUR
AU  - A. Yu. Popov
AU  - S. A. Telyakovskii
TI  - Estimate for the integral of the absolute value of a~sine series with monotone coefficients
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 270
EP  - 274
VL  - 280
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_280_a18/
LA  - ru
ID  - TM_2013_280_a18
ER  - 
%0 Journal Article
%A A. Yu. Popov
%A S. A. Telyakovskii
%T Estimate for the integral of the absolute value of a~sine series with monotone coefficients
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 270-274
%V 280
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_280_a18/
%G ru
%F TM_2013_280_a18
A. Yu. Popov; S. A. Telyakovskii. Estimate for the integral of the absolute value of a~sine series with monotone coefficients. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 270-274. http://geodesic.mathdoc.fr/item/TM_2013_280_a18/

[1] Young W.H., “On the Fourier series of bounded functions”, Proc. London Math. Soc. Ser. 2, 12 (1913), 41–70 | DOI | MR | Zbl

[2] Telyakovskii S.A., “Nekotorye svoistva ryadov po sinusam s monotonnymi koeffitsientami”, Anal. math., 18:4 (1992), 307–323 | DOI | MR

[3] Hartman Ph., Wintner A., “On sine series with monotone coefficients”, J. London Math. Soc., 28 (1953), 102–104 | DOI | MR | Zbl