Voir la notice du chapitre de livre
@article{TM_2013_280_a13,
author = {E. D. Livshits},
title = {A weak-type inequality for uniformly bounded trigonometric polynomials},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {215--226},
year = {2013},
volume = {280},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2013_280_a13/}
}
E. D. Livshits. A weak-type inequality for uniformly bounded trigonometric polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 215-226. http://geodesic.mathdoc.fr/item/TM_2013_280_a13/
[1] Bernstein S., Sur l'ordre de la mailleure approximation des fonctions continues par des polynômes de degré donné, Mém. Acad. R. Belg. Cl. Sci. Ser. 2, 4, Hayez, Bruxelles, 1912
[2] Bernshtein S.N., “O nailuchshem priblizhenii nepreryvnykh funktsii posredstvom mnogochlenov dannoi stepeni”, Sobranie sochinenii, T. 1, Izd-vo AN SSSR, M., 1952, 11–104
[3] Arestov V.V., “Tochnye neravenstva dlya trigonometricheskikh polinomov otnositelno integralnykh funktsionalov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:4 (2010), 38–53
[4] Babenko A.G., “Neravenstva slabogo tipa dlya trigonometricheskikh polinomov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 2 (1992), 34–41 | MR | Zbl
[5] Arestov V.V., Mendelev A.S., “Trigonometric polynomials of least deviation from zero in measure and related problems”, J. Approx. Theory, 162:10 (2010), 1852–1878 | DOI | MR | Zbl
[6] Riesz M., “Formule d'interpolation pour la dérivée d'un polynome trigonométrique”, C. r. Acad. sci. Paris, 158 (1914), 1152–1154 | Zbl
[7] Riesz M., “Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome”, Jahresber. Dtsch. Math.-Ver., 23 (1914), 354–368 | Zbl
[8] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR