A weak-type inequality for uniformly bounded trigonometric polynomials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 215-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_2013_280_a13,
     author = {E. D. Livshits},
     title = {A weak-type inequality for uniformly bounded trigonometric polynomials},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {215--226},
     publisher = {mathdoc},
     volume = {280},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_280_a13/}
}
TY  - JOUR
AU  - E. D. Livshits
TI  - A weak-type inequality for uniformly bounded trigonometric polynomials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 215
EP  - 226
VL  - 280
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_280_a13/
LA  - ru
ID  - TM_2013_280_a13
ER  - 
%0 Journal Article
%A E. D. Livshits
%T A weak-type inequality for uniformly bounded trigonometric polynomials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 215-226
%V 280
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_280_a13/
%G ru
%F TM_2013_280_a13
E. D. Livshits. A weak-type inequality for uniformly bounded trigonometric polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 215-226. http://geodesic.mathdoc.fr/item/TM_2013_280_a13/

[1] Bernstein S., Sur l'ordre de la mailleure approximation des fonctions continues par des polynômes de degré donné, Mém. Acad. R. Belg. Cl. Sci. Ser. 2, 4, Hayez, Bruxelles, 1912

[2] Bernshtein S.N., “O nailuchshem priblizhenii nepreryvnykh funktsii posredstvom mnogochlenov dannoi stepeni”, Sobranie sochinenii, T. 1, Izd-vo AN SSSR, M., 1952, 11–104

[3] Arestov V.V., “Tochnye neravenstva dlya trigonometricheskikh polinomov otnositelno integralnykh funktsionalov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:4 (2010), 38–53

[4] Babenko A.G., “Neravenstva slabogo tipa dlya trigonometricheskikh polinomov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 2 (1992), 34–41 | MR | Zbl

[5] Arestov V.V., Mendelev A.S., “Trigonometric polynomials of least deviation from zero in measure and related problems”, J. Approx. Theory, 162:10 (2010), 1852–1878 | DOI | MR | Zbl

[6] Riesz M., “Formule d'interpolation pour la dérivée d'un polynome trigonométrique”, C. r. Acad. sci. Paris, 158 (1914), 1152–1154 | Zbl

[7] Riesz M., “Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome”, Jahresber. Dtsch. Math.-Ver., 23 (1914), 354–368 | Zbl

[8] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR