Greedy bases in $L^p$ spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 188-197

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a weighted $L^p$ space $L^p(w)$ with a weight function $w$. It is known that the Haar system $\mathcal H_p$ normalized in $L^p$ is a greedy basis of $L^p$, $1$. We study a question of when the Haar system $\mathcal H_p^w$ normalized in $L^p(w)$ is a greedy basis of $L^p(w)$, $1$. We prove that if $w$ is such that $\mathcal H_p^w$ is a Schauder basis of $L^p(w)$, then $\mathcal H_p^w$ is also a greedy basis of $L^p(w)$, $1$. Moreover, we prove that a subsystem of the Haar system obtained by discarding finitely many elements from it is a Schauder basis in a weighted norm space $L^p(w)$; then it is a greedy basis.
@article{TM_2013_280_a11,
     author = {K. Kazarian and V. N. Temlyakov},
     title = {Greedy bases in $L^p$ spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {188--197},
     publisher = {mathdoc},
     volume = {280},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_280_a11/}
}
TY  - JOUR
AU  - K. Kazarian
AU  - V. N. Temlyakov
TI  - Greedy bases in $L^p$ spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 188
EP  - 197
VL  - 280
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_280_a11/
LA  - en
ID  - TM_2013_280_a11
ER  - 
%0 Journal Article
%A K. Kazarian
%A V. N. Temlyakov
%T Greedy bases in $L^p$ spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 188-197
%V 280
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_280_a11/
%G en
%F TM_2013_280_a11
K. Kazarian; V. N. Temlyakov. Greedy bases in $L^p$ spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 188-197. http://geodesic.mathdoc.fr/item/TM_2013_280_a11/