Global and local smoothness of the Hilbert transforms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 175-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_2013_280_a10,
     author = {M. I. Dyachenko and E. D. Nursultanov and S. Yu. Tikhonov},
     title = {Global and local smoothness of the {Hilbert} transforms},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {175--187},
     publisher = {mathdoc},
     volume = {280},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_280_a10/}
}
TY  - JOUR
AU  - M. I. Dyachenko
AU  - E. D. Nursultanov
AU  - S. Yu. Tikhonov
TI  - Global and local smoothness of the Hilbert transforms
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 175
EP  - 187
VL  - 280
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_280_a10/
LA  - ru
ID  - TM_2013_280_a10
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%A E. D. Nursultanov
%A S. Yu. Tikhonov
%T Global and local smoothness of the Hilbert transforms
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 175-187
%V 280
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_280_a10/
%G ru
%F TM_2013_280_a10
M. I. Dyachenko; E. D. Nursultanov; S. Yu. Tikhonov. Global and local smoothness of the Hilbert transforms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 175-187. http://geodesic.mathdoc.fr/item/TM_2013_280_a10/

[1] Bari N.K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[2] Bari N.K., Stechkin S.B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. mat. o-va, 5 (1956), 483–522 | MR | Zbl

[3] Belov Yu.S., Khavin V.P., “K teoreme I.I. Privalova o preobrazovanii Gilberta lipshitsevykh funktsii”, Mat. fizika, analiz, geometriya, 11:4 (2004), 380–407 | MR | Zbl

[4] Bennett C., Sharpley R., Interpolation of operators, Acad. Press, Boston, 1988 | MR

[5] Dyachenko M.I., Lokalnye svoistva funktsii i razlozheniya v ryady Fure, Dis. ... kand. fiz.-mat. nauk, MGU, M., 1980

[6] Dyachenko M.I., “Local smoothness of the conjugate functions”, Eurasian Math. J., 2:2 (2011), 31–59 | MR | Zbl

[7] Garnett J.B., Bounded analytic functions, Springer, New York, 2006 | MR | Zbl

[8] Nursultanov E., Tikhonov S., “Net spaces and boundedness of integral operators”, J. Geom. Anal., 21:4 (2011), 950–981 | DOI | MR | Zbl

[9] Priwaloff J., “Sur les fonctions conjuguées”, Bull. Soc. math. France, 44 (1916), 100–103 | MR | Zbl

[10] Privalov I.I., Integral Cauchy, Saratov, 1919

[11] Privalov I.I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M.; L., 1950

[12] Riesz M., “Sur les fonctions conjuguées”, Math. Z., 27:1 (1927), 218–244 | DOI | MR | Zbl

[13] Samko S.G., Yakubov A.Ya., “Otsenka Zigmunda dlya modulei nepreryvnosti drobnogo poryadka sopryazhennoi funktsii”, Izv. vuzov. Matematika., 1985, no. 12, 49–53 | MR | Zbl

[14] Stein E.M., Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, NJ, 1971 | MR

[15] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965 | MR

[16] Zygmund A., “O module ciagłości sumy szeregu sprzȩżonego z szeregiem Fouriera”, Prace mat.-fiz., 33 (1924), 125–132 | Zbl