Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2013_280_a10, author = {M. I. Dyachenko and E. D. Nursultanov and S. Yu. Tikhonov}, title = {Global and local smoothness of the {Hilbert} transforms}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {175--187}, publisher = {mathdoc}, volume = {280}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2013_280_a10/} }
TY - JOUR AU - M. I. Dyachenko AU - E. D. Nursultanov AU - S. Yu. Tikhonov TI - Global and local smoothness of the Hilbert transforms JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 175 EP - 187 VL - 280 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2013_280_a10/ LA - ru ID - TM_2013_280_a10 ER -
%0 Journal Article %A M. I. Dyachenko %A E. D. Nursultanov %A S. Yu. Tikhonov %T Global and local smoothness of the Hilbert transforms %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2013 %P 175-187 %V 280 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2013_280_a10/ %G ru %F TM_2013_280_a10
M. I. Dyachenko; E. D. Nursultanov; S. Yu. Tikhonov. Global and local smoothness of the Hilbert transforms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 175-187. http://geodesic.mathdoc.fr/item/TM_2013_280_a10/
[1] Bari N.K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[2] Bari N.K., Stechkin S.B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. mat. o-va, 5 (1956), 483–522 | MR | Zbl
[3] Belov Yu.S., Khavin V.P., “K teoreme I.I. Privalova o preobrazovanii Gilberta lipshitsevykh funktsii”, Mat. fizika, analiz, geometriya, 11:4 (2004), 380–407 | MR | Zbl
[4] Bennett C., Sharpley R., Interpolation of operators, Acad. Press, Boston, 1988 | MR
[5] Dyachenko M.I., Lokalnye svoistva funktsii i razlozheniya v ryady Fure, Dis. ... kand. fiz.-mat. nauk, MGU, M., 1980
[6] Dyachenko M.I., “Local smoothness of the conjugate functions”, Eurasian Math. J., 2:2 (2011), 31–59 | MR | Zbl
[7] Garnett J.B., Bounded analytic functions, Springer, New York, 2006 | MR | Zbl
[8] Nursultanov E., Tikhonov S., “Net spaces and boundedness of integral operators”, J. Geom. Anal., 21:4 (2011), 950–981 | DOI | MR | Zbl
[9] Priwaloff J., “Sur les fonctions conjuguées”, Bull. Soc. math. France, 44 (1916), 100–103 | MR | Zbl
[10] Privalov I.I., Integral Cauchy, Saratov, 1919
[11] Privalov I.I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M.; L., 1950
[12] Riesz M., “Sur les fonctions conjuguées”, Math. Z., 27:1 (1927), 218–244 | DOI | MR | Zbl
[13] Samko S.G., Yakubov A.Ya., “Otsenka Zigmunda dlya modulei nepreryvnosti drobnogo poryadka sopryazhennoi funktsii”, Izv. vuzov. Matematika., 1985, no. 12, 49–53 | MR | Zbl
[14] Stein E.M., Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, NJ, 1971 | MR
[15] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965 | MR
[16] Zygmund A., “O module ciagłości sumy szeregu sprzȩżonego z szeregiem Fouriera”, Prace mat.-fiz., 33 (1924), 125–132 | Zbl