On the analytic complexity of discriminants
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 86-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper deals with the notion of analytic complexity introduced by V. K. Beloshapka. We give an algorithm which allows one to check whether a bivariate analytic function belongs to the second class of analytic complexity. We also provide estimates for the analytic complexity of classical discriminants and introduce the notion of analytic complexity of a knot.
@article{TM_2012_279_a7,
     author = {V. A. Krasikov and T. M. Sadykov},
     title = {On the analytic complexity of discriminants},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {86--101},
     year = {2012},
     volume = {279},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a7/}
}
TY  - JOUR
AU  - V. A. Krasikov
AU  - T. M. Sadykov
TI  - On the analytic complexity of discriminants
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 86
EP  - 101
VL  - 279
UR  - http://geodesic.mathdoc.fr/item/TM_2012_279_a7/
LA  - ru
ID  - TM_2012_279_a7
ER  - 
%0 Journal Article
%A V. A. Krasikov
%A T. M. Sadykov
%T On the analytic complexity of discriminants
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 86-101
%V 279
%U http://geodesic.mathdoc.fr/item/TM_2012_279_a7/
%G ru
%F TM_2012_279_a7
V. A. Krasikov; T. M. Sadykov. On the analytic complexity of discriminants. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 86-101. http://geodesic.mathdoc.fr/item/TM_2012_279_a7/

[1] Vitushkin A. G., “13-ya problema Gilberta i smezhnye voprosy”, UMN, 59:1 (2004), 11–24 | DOI | MR | Zbl

[2] Adams C. C., The knot book: An elementary introduction to the mathematical theory of knots, Freeman, New York, 1994 | MR | Zbl

[3] Bank S. B., Kaufman R. P., “A note on Hölder's theorem concerning the Gamma function”, Math. Ann., 232 (1978), 115–120 | DOI | MR | Zbl

[4] Beloshapka V. K., “Analytic complexity of functions of two variables”, Russ. J. Math. Phys., 14:3 (2007), 243–249 | DOI | MR | Zbl

[5] Beukers F., Heckman G., “Monodromy for the hypergeometric function $_nF_{n-1}$”, Invent. math., 95 (1989), 325–354 | DOI | MR | Zbl

[6] Gelfand I. M., Kapranov M. M., Zelevinsky A. V., Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston, 1994 | MR | Zbl

[7] Grothendieck A., “Esquisse d'un programme (Sketch of a programme)”, Geometric Galois actions, v. 1, LMS Lect. Note Ser., 242, Around Grothendieck's “Esquisse d'un programme”, Cambridge Univ. Press, Cambridge, 1997, 5–48, 243–283 | MR | Zbl

[8] Ostrowski A., “Über Dirichletsche Reihen und algebraische Differentialgleichungen”, Math. Z., 8 (1920), 241–298 | DOI | MR | Zbl

[9] Passare M., Sadykov T., Tsikh A., “Singularities of hypergeometric functions in several variables”, Compos. math., 141:3 (2005), 787–810 | DOI | MR | Zbl

[10] Zupan A., Bridge and pants complexities of knots, E-print, 2011, arXiv: 1110.3019[math.GT] | MR