Model-surface method: An infinite-dimensional version
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 20-30

Voir la notice de l'article provenant de la source Math-Net.Ru

The model-surface method is applied to the study of real analytic submanifolds of a complex Hilbert space. Generally, the results are analogous to those in the finite-dimensional case; however, there are some peculiarities and specific difficulties. One of these peculiarities is the existence of a model surface with the Levi–Tanaka algebra of infinite length.
@article{TM_2012_279_a2,
     author = {V. K. Beloshapka},
     title = {Model-surface method: {An} infinite-dimensional version},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {20--30},
     publisher = {mathdoc},
     volume = {279},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a2/}
}
TY  - JOUR
AU  - V. K. Beloshapka
TI  - Model-surface method: An infinite-dimensional version
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 20
EP  - 30
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_279_a2/
LA  - ru
ID  - TM_2012_279_a2
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%T Model-surface method: An infinite-dimensional version
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 20-30
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_279_a2/
%G ru
%F TM_2012_279_a2
V. K. Beloshapka. Model-surface method: An infinite-dimensional version. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 20-30. http://geodesic.mathdoc.fr/item/TM_2012_279_a2/