Model-surface method: An infinite-dimensional version
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 20-30
Voir la notice de l'article provenant de la source Math-Net.Ru
The model-surface method is applied to the study of real analytic submanifolds of a complex Hilbert space. Generally, the results are analogous to those in the finite-dimensional case; however, there are some peculiarities and specific difficulties. One of these peculiarities is the existence of a model surface with the Levi–Tanaka algebra of infinite length.
@article{TM_2012_279_a2,
author = {V. K. Beloshapka},
title = {Model-surface method: {An} infinite-dimensional version},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {20--30},
publisher = {mathdoc},
volume = {279},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a2/}
}
V. K. Beloshapka. Model-surface method: An infinite-dimensional version. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 20-30. http://geodesic.mathdoc.fr/item/TM_2012_279_a2/