New conditions for uniform approximation by polyanalytic polynomials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 227-241

Voir la notice de l'article provenant de la source Math-Net.Ru

We are interested in the problem of uniform approximability of functions by polyanalytic polynomials on compact subsets of the plane. We present new results showing the nature of the approximability conditions arising in this problem and their dependence on the order of polyanalyticity.
@article{TM_2012_279_a14,
     author = {J. J. Carmona and K. Yu. Fedorovskiy},
     title = {New conditions for uniform approximation by polyanalytic polynomials},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {227--241},
     publisher = {mathdoc},
     volume = {279},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a14/}
}
TY  - JOUR
AU  - J. J. Carmona
AU  - K. Yu. Fedorovskiy
TI  - New conditions for uniform approximation by polyanalytic polynomials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 227
EP  - 241
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_279_a14/
LA  - en
ID  - TM_2012_279_a14
ER  - 
%0 Journal Article
%A J. J. Carmona
%A K. Yu. Fedorovskiy
%T New conditions for uniform approximation by polyanalytic polynomials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 227-241
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_279_a14/
%G en
%F TM_2012_279_a14
J. J. Carmona; K. Yu. Fedorovskiy. New conditions for uniform approximation by polyanalytic polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 227-241. http://geodesic.mathdoc.fr/item/TM_2012_279_a14/