Harnack inequalities, Kobayashi distances and holomorphic motions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 206-218

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove some generalizations and analogs of the Harnack inequalities for pluriharmonic, holomorphic and “almost holomorphic” functions. The results are applied to proving smoothness properties of holomorphic motions over almost complex manifolds.
@article{TM_2012_279_a12,
     author = {E. M. Chirka},
     title = {Harnack inequalities, {Kobayashi} distances and holomorphic motions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {206--218},
     publisher = {mathdoc},
     volume = {279},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a12/}
}
TY  - JOUR
AU  - E. M. Chirka
TI  - Harnack inequalities, Kobayashi distances and holomorphic motions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 206
EP  - 218
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_279_a12/
LA  - ru
ID  - TM_2012_279_a12
ER  - 
%0 Journal Article
%A E. M. Chirka
%T Harnack inequalities, Kobayashi distances and holomorphic motions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 206-218
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_279_a12/
%G ru
%F TM_2012_279_a12
E. M. Chirka. Harnack inequalities, Kobayashi distances and holomorphic motions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 206-218. http://geodesic.mathdoc.fr/item/TM_2012_279_a12/