Magnetic Bloch theory and noncommutative geometry
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 193-205

Voir la notice de l'article provenant de la source Math-Net.Ru

An interpretation of the magnetic Bloch theory in terms of noncommutative geometry is given. As an application we obtain a mathematical interpretation of the quantum Hall effect.
@article{TM_2012_279_a11,
     author = {A. G. Sergeev},
     title = {Magnetic {Bloch} theory and noncommutative geometry},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {193--205},
     publisher = {mathdoc},
     volume = {279},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a11/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - Magnetic Bloch theory and noncommutative geometry
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 193
EP  - 205
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_279_a11/
LA  - ru
ID  - TM_2012_279_a11
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T Magnetic Bloch theory and noncommutative geometry
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 193-205
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_279_a11/
%G ru
%F TM_2012_279_a11
A. G. Sergeev. Magnetic Bloch theory and noncommutative geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 193-205. http://geodesic.mathdoc.fr/item/TM_2012_279_a11/