Classification of coverings of the circle
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 96-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a classification of $d$-coverings of degree $d\geq2$ of the circle $S^1$ up to conjugation by orientation-preserving homeomorphisms. We show that being equipped with a scheme, the $d$-equivalence class of an invariant countable set (distinguished set) of the linear expanding endomorphism of degree $d$ is a complete classification invariant.
@article{TM_2012_278_a8,
     author = {E. V. Zhuzhoma and N. V. Isaenkova},
     title = {Classification of coverings of the circle},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {96--101},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a8/}
}
TY  - JOUR
AU  - E. V. Zhuzhoma
AU  - N. V. Isaenkova
TI  - Classification of coverings of the circle
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 96
EP  - 101
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_278_a8/
LA  - ru
ID  - TM_2012_278_a8
ER  - 
%0 Journal Article
%A E. V. Zhuzhoma
%A N. V. Isaenkova
%T Classification of coverings of the circle
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 96-101
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_278_a8/
%G ru
%F TM_2012_278_a8
E. V. Zhuzhoma; N. V. Isaenkova. Classification of coverings of the circle. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 96-101. http://geodesic.mathdoc.fr/item/TM_2012_278_a8/

[1] Anosov D.V., “Iskhodnye ponyatiya”, Dinamicheskie sistemy–1, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 1, VINITI, M., 1985, 156–178

[2] Anosov D.V., Solodov V.V., “Giperbolicheskie mnozhestva”, Dinamicheskie sistemy–9, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 66, VINITI, M., 1991, 12–99 | MR | MR | Zbl

[3] Yakobson M.V., “O gladkikh otobrazheniyakh okruzhnosti v sebya”, Mat. sb., 85:2 (1971), 163–188 | Zbl

[4] Aranson S.Kh., Belitsky G.R., Zhuzhoma E.V., Introduction to the qualitative theory of dynamical systems on surfaces, Transl. Math. Monogr., 153, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[5] Denjoy A., “Sur les courbes définies par les équations différentielles à la surface du tore”, J. Math. Pures Appl., 11 (1932), 333–375 | Zbl

[6] Markley N.G., “Homeomorphisms of the circle without periodic points”, Proc. London Math. Soc., 20 (1970), 688–698 | DOI | MR | Zbl

[7] de Melo W., van Strien S., One-dimensional dynamics, Springer, Berlin, 1993 | MR | Zbl

[8] Nitecki Z., “Nonsingular endomorphisms of the circle”, Global analysis, Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 203–220 | DOI | MR

[9] Shub M., “Endomorphisms of compact differentiable manifolds”, Amer. J. Math., 91 (1969), 175–199 | DOI | MR | Zbl