On self-similar Ovsyannikov's vortex
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 276-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a multidimensional self-similar solution of the dynamic equations of an ideal compressible fluid. The solution describes swirling motions of a gas and is partially invariant with respect to the rotation group extended by dilations. The analysis of the solution reduces to the analysis of the singular points and manifolds of a system of fourth-order ordinary differential equations. We also give an example of a solution that describes the expansion of a swirling gas cloud into vacuum.
@article{TM_2012_278_a25,
     author = {A. A. Cherevko and A. P. Chupakhin},
     title = {On self-similar {Ovsyannikov's} vortex},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {276--287},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a25/}
}
TY  - JOUR
AU  - A. A. Cherevko
AU  - A. P. Chupakhin
TI  - On self-similar Ovsyannikov's vortex
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 276
EP  - 287
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_278_a25/
LA  - ru
ID  - TM_2012_278_a25
ER  - 
%0 Journal Article
%A A. A. Cherevko
%A A. P. Chupakhin
%T On self-similar Ovsyannikov's vortex
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 276-287
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_278_a25/
%G ru
%F TM_2012_278_a25
A. A. Cherevko; A. P. Chupakhin. On self-similar Ovsyannikov's vortex. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 276-287. http://geodesic.mathdoc.fr/item/TM_2012_278_a25/

[1] Sedov L.I., Metody podobiya i razmernosti v mekhanike, Nauka, M., 1965

[2] Kraiko A.N., Teoreticheskaya gazovaya dinamika: klassika i sovremennost, Torus press, M., 2010

[3] Laks P., Giperbolicheskie differentsialnye uravneniya v chastnykh proizvodnykh, Regulyarnaya i khaoticheskaya dinamika, Moskva; In-t kompyut. issled., Izhevsk, 2010

[4] Ovsyannikov L.V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[5] Ovsyannikov L.V., “Osobyi vikhr”, Prikl. mekh. i tekhn. fiz., 36:3 (1995), 45–52 | MR | Zbl

[6] Chupakhin A.P., “Invariantnye podmodeli osobogo vikhrya”, PMM, 67:3 (2003), 390–405 | MR | Zbl

[7] Cherevko A.A., Chupakhin A.P., Statsionarnyi osobyi vikhr, Preprint No1-05, In-t gidrodinamiki SO RAN, Novosibirsk, 2005

[8] Cherevko A.A., Chupakhin A.P., “Odnorodnyi osobyi vikhr”, Prikl. mekh. i tekhn. fiz., 45:2 (2004), 75–89 | MR | Zbl

[9] Pavlenko A.S., “Proektivnaya podmodel vikhrya Ovsyannikova”, Prikl. mekh. i tekhn. fiz., 46:4 (2005), 3–16 | MR | Zbl

[10] Golovin S.V., “Singular vortex in magnetohydrodynamics”, J. Phys. A: Math. Gen., 38:20 (2005), 4501–4516 | DOI | MR | Zbl

[11] Brushlinskii K.V., Kazhdan Ya.M., “Ob avtomodelnykh resheniyakh nekotorykh zadach gazovoi dinamiki”, UMN, 18:2 (1963), 3–23 | MR

[12] Godunov S.K., Kireeva I.L., “O nekotorykh avtomodelnykh dvizheniyakh idealnogo gaza”, ZhVMiMF, 8:2 (1968), 374–392 | Zbl

[13] Ovsyannikov L.V., Lektsii po osnovam gazovoi dinamiki, In-t kompyut. issled., Moskva; Izhevsk, 2003

[14] Serrin Dzh., Matematicheskie osnovy klassicheskoi mekhaniki zhidkosti, Izd-vo inostr. lit., M., 1963

[15] Shilnikov L.P., Shilnikov A.L., Turaev D.V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Ch. 1, In-t kompyut. issled., Moskva; Izhevsk, 2004; Ч. 2, 2009 | Zbl

[16] Bogoyavlenskii O. I., Metody kachestvennoi teorii dinamicheskikh sistem v astrofizike i gazovoi dinamike, Nauka, M., 1980 | MR