Stability of local transitivity of a~generic control system on a~surface with boundary
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 269-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

A classification of generic singularities of local transitivity of smooth control systems on surfaces with boundary is obtained. The stability of these singularities and of the entire set of points with identical properties of local transitivity with respect to small perturbations of a generic system is proved.
@article{TM_2012_278_a24,
     author = {Hy {\DJ}\'u'c Mạnh},
     title = {Stability of local transitivity of a~generic control system on a~surface with boundary},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {269--275},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a24/}
}
TY  - JOUR
AU  - Hy Đú'c Mạnh
TI  - Stability of local transitivity of a~generic control system on a~surface with boundary
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 269
EP  - 275
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_278_a24/
LA  - ru
ID  - TM_2012_278_a24
ER  - 
%0 Journal Article
%A Hy Đú'c Mạnh
%T Stability of local transitivity of a~generic control system on a~surface with boundary
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 269-275
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_278_a24/
%G ru
%F TM_2012_278_a24
Hy Đú'c Mạnh. Stability of local transitivity of a~generic control system on a~surface with boundary. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 269-275. http://geodesic.mathdoc.fr/item/TM_2012_278_a24/

[1] Arnold V.I., Varchenko A.N., Gusein-Zade S.M., Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR

[2] Davydov A.A., “Osobennosti polei predelnykh napravlenii dvumernykh upravlyaemykh sistem”, Mat. sb., 136:4 (1988), 478–499 | MR

[3] Davydov A.A., “Lokalnaya upravlyaemost tipichnykh dinamicheskikh neravenstv na poverkhnostyakh”, Tr. MIAN, 209, 1995, 84–123 | MR | Zbl

[4] Petrov N.N., “Ob upravlyaemosti avtonomnykh sistem”, Dif. uravneniya, 4:4 (1968), 606–617 | Zbl

[5] Davydov A.A., Qualitative theory of control systems, Transl. Math. Monogr., 141, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl