The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff--Bebutov metric and statistically invariant sets of control systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 217-226

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain conditions that allow one to evaluate the relative frequency of occurrence of the reachable set of a control system in a given set. If the relative frequency of occurrence in this set is $1$, then the set is said to be statistically invariant. It is assumed that the images of the right-hand side of the differential inclusion corresponding to the given control system are convex, closed, but not necessarily compact. We also study the basic properties of the space $\mathrm{clcv}(\mathbb R^n)$ of nonempty closed convex subsets of $\mathbb R^n$ with the Hausdorff–Bebutov metric.
@article{TM_2012_278_a19,
     author = {L. I. Rodina},
     title = {The space $\mathrm{clcv}(\mathbb R^n)$ with the {Hausdorff--Bebutov} metric and statistically invariant sets of control systems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {217--226},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a19/}
}
TY  - JOUR
AU  - L. I. Rodina
TI  - The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff--Bebutov metric and statistically invariant sets of control systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 217
EP  - 226
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_278_a19/
LA  - ru
ID  - TM_2012_278_a19
ER  - 
%0 Journal Article
%A L. I. Rodina
%T The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff--Bebutov metric and statistically invariant sets of control systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 217-226
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_278_a19/
%G ru
%F TM_2012_278_a19
L. I. Rodina. The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff--Bebutov metric and statistically invariant sets of control systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 217-226. http://geodesic.mathdoc.fr/item/TM_2012_278_a19/