Fundamental solutions of singular differential equations with a~Bessel $D_B$ operator
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 148-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem on the fundamental solution of an ordinary differential equation in which the role of even-order derivatives is played by powers of the Bessel operator and the role of odd-order derivatives is played by the derivatives of integer powers of the Bessel operator. The result obtained has allowed us to derive formulas for the fundamental solutions of classical singular equations with the Bessel operator when the index of the Bessel operator can take negative values greater than $-1$; in this case the dimension $N$ of the Euclidean space and the total sum $|\gamma|$ of the indices of the Bessel operators that appear in the equation should satisfy the condition $N+|\gamma|-1>0$.
@article{TM_2012_278_a13,
     author = {L. N. Lyakhov},
     title = {Fundamental solutions of singular differential equations with {a~Bessel} $D_B$ operator},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {148--160},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a13/}
}
TY  - JOUR
AU  - L. N. Lyakhov
TI  - Fundamental solutions of singular differential equations with a~Bessel $D_B$ operator
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 148
EP  - 160
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_278_a13/
LA  - ru
ID  - TM_2012_278_a13
ER  - 
%0 Journal Article
%A L. N. Lyakhov
%T Fundamental solutions of singular differential equations with a~Bessel $D_B$ operator
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 148-160
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_278_a13/
%G ru
%F TM_2012_278_a13
L. N. Lyakhov. Fundamental solutions of singular differential equations with a~Bessel $D_B$ operator. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 148-160. http://geodesic.mathdoc.fr/item/TM_2012_278_a13/

[1] Lyakhov L.N., “Multiplikatory smeshannogo preobrazovaniya Fure–Besselya”, Tr. MIAN, 214, 1997, 234–249 | MR | Zbl

[2] Kipriyanov I.A., Katrakhov V.V., “Ob odnom klasse odnomernykh singulyarnykh psevdodifferentsialnykh operatorov”, Mat. sb., 104:1 (1977), 49–68 | MR | Zbl

[3] Katrakhov V.V., Lyakhov L.N., “Polnoe preobrazovanie Fure–Besselya i algebra singulyarnykh psevdodifferentsialnykh operatorov”, Dif. uravneniya, 47:5 (2011), 681–695 | MR | Zbl

[4] Raikhelgauz L.B., Polnoe preobrazovanie Fure–Besselya i singulyarnye uravneniya s $D_\mathrm B$-operatorom Besselya, Avtoref. dis. ... kand. fiz.-mat. nauk, Voronezh. gos. un-t, Voronezh, 2011

[5] Chernyshev G.L., O zadache Koshi s singulyarnym giperbolicheskim operatorom, Avtoref. dis. ... kand. fiz.-mat. nauk, Voronezh. gos. un-t, Voronezh, 1972

[6] Kipriyanov I.A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997 | MR

[7] Kipriyanov I.A., Ivanov L.A., “Poluchenie fundamentalnykh reshenii dlya odnorodnykh uravnenii s osobennostyami”, Tr. sem. S.L. Soboleva, no. 1, 1983, 55–77 | MR | Zbl

[8] Levitan B.M., “Razlozhenie po funktsiyam Besselya v ryady i integraly Fure”, UMN, 6:2 (1951), 102–143 | MR | Zbl

[9] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii: Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR

[10] Lyakhov L.N., B-gipersingulyarnye integraly i ikh prilozheniya k opisaniyu funktsionalnykh klassov Kipriyanova i k integralnym uravneniyam s B-potentsialnymi yadrami, 234 s., Izd-vo Lipetsk. gos. ped. un-ta, Lipetsk, 2007