Multidimensional Jordan--Pochhammer systems and their applications
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 138-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the so-called Jordan–Pochhammer systems, a special class of linear Pfaffian systems of Fuchsian type on complex linear (or projective) spaces. These systems appeared as systems of differential equations for hypergeometric type integrals in which the integrand is a product of powers of linear functions. These systems also arise in some reductions of the Knizhnik–Zamolodchikov equations. The main advantage of these systems is the possibility of presenting a basis in the solution space of such systems in an explicit integral form and, as a consequence, of describing their monodromy representation. The main focus in the paper is placed on the applications of Jordan–Pochhammer systems. We describe the relationship of Jordan–Pochhammer systems to isomonodromic deformations of Fuchsian systems that are described by the Schlesinger equations, as well as to the linearization of the dynamical system of bending spatial polygons. We also describe the application of Jordan–Pochhammer systems to constructing Kohno systems on the Manin–Schechtman configuration spaces.
@article{TM_2012_278_a12,
     author = {V. P. Leksin},
     title = {Multidimensional {Jordan--Pochhammer} systems and their applications},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {138--147},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a12/}
}
TY  - JOUR
AU  - V. P. Leksin
TI  - Multidimensional Jordan--Pochhammer systems and their applications
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 138
EP  - 147
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_278_a12/
LA  - ru
ID  - TM_2012_278_a12
ER  - 
%0 Journal Article
%A V. P. Leksin
%T Multidimensional Jordan--Pochhammer systems and their applications
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 138-147
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_278_a12/
%G ru
%F TM_2012_278_a12
V. P. Leksin. Multidimensional Jordan--Pochhammer systems and their applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 138-147. http://geodesic.mathdoc.fr/item/TM_2012_278_a12/

[1] Aguirre L., Felder G., Veselov A.P., “Gaudin subalgebras and stable rational curves”, Compos. Math., 147:5 (2011), 1463–1478, arXiv: 1004.3253v1 [math.AG] | DOI | MR | Zbl

[2] Ains E.L., Obyknovennye differentsialnye uravneniya, Faktorial, M., 2005

[3] Arnold V.I., “Koltso kogomologii gruppy krashenykh kos”, Mat. zametki., 5:2 (1969), 227–231 | MR | Zbl

[4] Cherednik I., “Monodromy representations for generalized Knizhnik–Zamolodchikov equations and Hecke algebras”, Publ. Res. Inst. Math. Sci., 27 (1991), 711–726 | DOI | MR | Zbl

[5] Gontsov R.R., “O klassicheskikh resheniyakh sistem Garne”, Analiticheskie metody analiza i differentsialnykh uravnenii. T. 2: Differentsialnye uravneniya i sovremennye problemy mekhaniki, Tr. 5-i mezhdunar. konf. (Minsk, 2009), In-t matematiki NAN Belarusi, Minsk, 2010, 53–58

[6] Jordan C., Cours d'analyse de l'École Polytechnique, T. III, Gauthier-Villars, Paris, 1896 | Zbl

[7] Kapovich M., Millson J., “Quantization of bending deformations of polygons in $\mathbb E^3$, hypergeometric integrals and the Gassner representation”, Can. Math. Bull., 44 (2001), 36–60 | DOI | MR | Zbl

[8] Kohno T., “On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces”, Nagoya Math. J., 92 (1983), 21–37 | MR | Zbl

[9] Kohno T., “Linear representations of braid groups and classical Yang–Baxter equations”, Braids, Proc. AMS–IMS–SIAM Jt. Summer Res. Conf. (Santa Cruz, CA, 1986.), Contemp. Math., 78, Amer. Math. Soc., Providence, RI, 1988, 339–363 | DOI | MR

[10] Kohno T., “Integrable connections related to Manin and Schechtman's higher braid groups”, Ill. J. Math., 34 (1990), 476–484 | MR | Zbl

[11] Klyachko A.A., “Prostranstvennye mnogougolniki i ustoichivye konfiguratsii tochek na proektivnoi pryamoi”, Algebraicheskaya geometriya i ee prilozheniya, Izd-vo YarGU, Yaroslavl, 1992, 67–84 | MR

[12] Leksin V.P., “Meromorfnye pfaffovy sistemy na kompleksnykh proektivnykh prostranstvakh”, Mat. sb., 129:2 (1986), 201–217 | MR | Zbl

[13] Leksin V.P., “O zadache Rimana–Gilberta dlya analiticheskikh semeistv predstavlenii”, Mat. zametki, 50:2 (1991), 89–97 | MR | Zbl

[14] Leksin V.P., “Monodromiya fuksovykh sistem na kompleksnykh lineinykh prostranstvakh”, Tr. MIAN, 256, 2007, 267–277 | MR | Zbl

[15] Manin Yu.I., Schechtman V.V., “Arrangements of hyperplanes, higher braid groups and higher Bruhat orders”, Algebraic number theory: Proc. Workshop, Berkeley, CA, 1987, Adv. Stud. Pure Math., 17, Acad. Press, 1989, Boston, 289–308 | MR

[16] Oi S., Ueno K., The formal KZ equation on the moduli space $\mathcal M_{0,5}$ and the harmonic product of multiple zeta values, E-print, 2009, arXiv: 0910.0718v2 [math.QA] | MR

[17] Pochhammer L., “Ueber gewisse partielle Differentialgleichungen, denen hypergeometrische Integrale genügen”, Math. Ann., 33 (1889), 353–371 | DOI | MR

[18] Squier C.C., “Matrix representations of Artin groups”, Proc. Amer. Math. Soc., 103 (1988), 49–53 | DOI | MR | Zbl

[19] Takano K., Bannai E., “A global study of Jordan–Pochhammer differential equations”, Funkc. Ekvacioj., 19:1 (1976), 85–99 | MR | Zbl