Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2012_278_a11, author = {E. A. Kopylova}, title = {On long-time decay for magnetic {Schr\"odinger} and {Klein--Gordon} equations}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {129--137}, publisher = {mathdoc}, volume = {278}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a11/} }
TY - JOUR AU - E. A. Kopylova TI - On long-time decay for magnetic Schr\"odinger and Klein--Gordon equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 129 EP - 137 VL - 278 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2012_278_a11/ LA - en ID - TM_2012_278_a11 ER -
E. A. Kopylova. On long-time decay for magnetic Schr\"odinger and Klein--Gordon equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 129-137. http://geodesic.mathdoc.fr/item/TM_2012_278_a11/
[1] Agmon S., “Spectral properties of Schrödinger operators and scattering theory”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. 4, 2 (1975), 151–218 | MR | Zbl
[2] D'Ancona P., Fanelli L., “Decay estimates for the wave and Dirac equations with a magnetic potential”, Commun. Pure Appl. Math., 60:3 (2007), 357–392 | DOI | MR | Zbl
[3] D'Ancona P., Fanelli L., “Strichartz and smoothing estimates for dispersive equations with magnetic potentials”, Commun. Partial Diff. Eqns., 33:6 (2008), 1082–1112 | DOI | MR | Zbl
[4] D'Ancona P., Fanelli L., Vega L., Visciglia N., “Endpoint Strichartz estimates for the magnetic Schrödinger equation”, J. Funct. Anal., 258:10 (2010), 3227–3240 | DOI | MR | Zbl
[5] Imaikin V., Komech A., Vainberg B., “On scattering of solitons for the Klein–Gordon equation coupled to a particle”, Commun. Math. Phys., 268:2 (2006), 321–367 | DOI | MR | Zbl
[6] Jensen A., Kato T., “Spectral properties of Schrödinger operators and time-decay of the wave functions”, Duke Math. J., 46 (1979), 583–611 | DOI | MR | Zbl
[7] Komech A.I., Kopylova E.A., “Weighted energy decay for 3D Klein–Gordon equation”, J. Diff. Eqns., 248:3 (2010), 501–520 | DOI | MR | Zbl
[8] Murata M., “Asymptotic expansions in time for solutions of Schrödinger-type equations”, J. Funct. Anal., 49 (1982), 10–56 | DOI | MR | Zbl
[9] Vainberg B.R., “Behavior for large time of solutions of the Klein–Gordon equation”, Trans. Moscow Math. Soc., 30 (1976), 139–158 | MR | MR | Zbl | Zbl
[10] Vainberg B.R., Asymptotic methods in equations of mathematical physics, Gordon and Breach, New York, 1989 | MR | MR | Zbl | Zbl