On long-time decay for magnetic Schr\"odinger and Klein--Gordon equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 129-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a dispersive long-time decay in weighted energy norms for the solutions of the 3D Schrödinger and Klein–Gordon equations with small magnetic potentials.
@article{TM_2012_278_a11,
     author = {E. A. Kopylova},
     title = {On long-time decay for magnetic {Schr\"odinger} and {Klein--Gordon} equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {129--137},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a11/}
}
TY  - JOUR
AU  - E. A. Kopylova
TI  - On long-time decay for magnetic Schr\"odinger and Klein--Gordon equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 129
EP  - 137
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_278_a11/
LA  - en
ID  - TM_2012_278_a11
ER  - 
%0 Journal Article
%A E. A. Kopylova
%T On long-time decay for magnetic Schr\"odinger and Klein--Gordon equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 129-137
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_278_a11/
%G en
%F TM_2012_278_a11
E. A. Kopylova. On long-time decay for magnetic Schr\"odinger and Klein--Gordon equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 129-137. http://geodesic.mathdoc.fr/item/TM_2012_278_a11/

[1] Agmon S., “Spectral properties of Schrödinger operators and scattering theory”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. 4, 2 (1975), 151–218 | MR | Zbl

[2] D'Ancona P., Fanelli L., “Decay estimates for the wave and Dirac equations with a magnetic potential”, Commun. Pure Appl. Math., 60:3 (2007), 357–392 | DOI | MR | Zbl

[3] D'Ancona P., Fanelli L., “Strichartz and smoothing estimates for dispersive equations with magnetic potentials”, Commun. Partial Diff. Eqns., 33:6 (2008), 1082–1112 | DOI | MR | Zbl

[4] D'Ancona P., Fanelli L., Vega L., Visciglia N., “Endpoint Strichartz estimates for the magnetic Schrödinger equation”, J. Funct. Anal., 258:10 (2010), 3227–3240 | DOI | MR | Zbl

[5] Imaikin V., Komech A., Vainberg B., “On scattering of solitons for the Klein–Gordon equation coupled to a particle”, Commun. Math. Phys., 268:2 (2006), 321–367 | DOI | MR | Zbl

[6] Jensen A., Kato T., “Spectral properties of Schrödinger operators and time-decay of the wave functions”, Duke Math. J., 46 (1979), 583–611 | DOI | MR | Zbl

[7] Komech A.I., Kopylova E.A., “Weighted energy decay for 3D Klein–Gordon equation”, J. Diff. Eqns., 248:3 (2010), 501–520 | DOI | MR | Zbl

[8] Murata M., “Asymptotic expansions in time for solutions of Schrödinger-type equations”, J. Funct. Anal., 49 (1982), 10–56 | DOI | MR | Zbl

[9] Vainberg B.R., “Behavior for large time of solutions of the Klein–Gordon equation”, Trans. Moscow Math. Soc., 30 (1976), 139–158 | MR | MR | Zbl | Zbl

[10] Vainberg B.R., Asymptotic methods in equations of mathematical physics, Gordon and Breach, New York, 1989 | MR | MR | Zbl | Zbl